Bài 1. (2 điểm) Phân tích các đa thức sau thành nhân tử:
a) ${{x}^{2}}+2xy+{{y}^{2}}-x-y$.
b) $2{{x}^{3}}+6{{x}^{2}}+12x+8$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a, 2x2+4x+2-2y2 = 2(x2+2x+1-y2)= 2[(x+1)2-y2 ] = 2(x-y+1)(x+y+1)
b, 2x - 2y - x2 + 2xy - y2= 2(x -y) - (x2 - 2xy + y2) = 2(x-y)-(x-y)2=(x-y)(2-x+y)
c, x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x-y-1)(x+y+1)
d, x2-4x-2xy-4y+y2= x2-2xy+y2-4x-4y=(x-y)
2.
a, x2-3x+2=x2-x-2x+2=x(x-1)-2(x-1)=(x-2)(x-1)
b, x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+3)(x+2)
c, x2+6x-6=
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
a)\(=3x\left(x+2y\right)\)
c)\(=\left(x-7\right)\left(x-1\right)\)
b)\(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x+3\right)\left(x-2y\right)\)
d)\(=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(a,3x^2+6xy=3x\left(x+2y\right)\\ c,x^2-8x+7=\left(x^2-x\right)-\left(7x-7\right)=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\\ b,x^2-2xy+3x-6y=\left(x^2+3x\right)-\left(2xy+6y\right)=x\left(x+3\right)-2y\left(x+3\right)=\left(x+3\right)\left(x-2y\right)\\ d,4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
6, \(x^2-1+2xy+y^2=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)
7, \(4x^2-12x+9-y^2=\left(2x-3\right)^2-y^2=\left(2x-3-y\right)\left(2x-3+y\right)\)
8, \(16x^2-4y^2+4y-1=16x^2-\left(2y-1\right)^2=\left(4x-2y+1\right)\left(4x+2y-1\right)\)
9, \(25-x^2-12x-36=25-\left(x+6\right)^2=\left(5-x-6\right)\left(5+x+5\right)=-\left(x+1\right)\left(x+10\right)\)
10, \(x^2-9-5\left(x+3\right)=\left(x-3\right)\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-8\right)\)
`#040911`
`a)`
`x^2 + y^2 + 2xy - 25`
`= (x^2 + 2xy + y^2) - 25`
`= [ (x)^2 + 2*x*y + (y)^2] - 5^2`
`= (x + y)^2 - 5^2`
`= (x + y - 5)(x + y + 5)`
`b)`
`x^2 + 2x - 15`
`= x^2 + 5x - 3x - 15`
`= (x^2 + 5x) - (3x + 15)`
`= x(x + 5) - 3(x + 5)`
`= (x - 3)(x + 5)`
`c)`
`x^2 - x - 2`
`= x^2 - 2x + x - 2`
`= (x^2 - 2x) + (x - 2)`
`= x(x - 2) + (x - 2)`
`= (x + 1)(x - 2)`
`d)`
`3x^2 - 11x + 6`
`= 3x^2 - 9x - 2x + 6`
`= (3x^2 - 9x) - (2x - 6)`
`= 3x(x - 3) - 2(x - 3)`
`= (3x - 2)(x - 3)`
`a, (x+y)^2-25 = (x+y+5)(x+y-5)`.
`b, x^2+2x-15 = (x+1)^2-16 = (x-3)(x+5)`.
`c, x^2-x-2=(x-2)(x+1)`
`d, 3x^2-11x+6 = (3x-2)(x-3)`.
a) x² + 2xy + y² - x - y
= (x² + 2xy + y²) - (x + y)
= (x + y)² - (x + y)
= (x + y)(x + y + 1)
b) 2x³ + 6x² + 12x + 8
= 2(x³ + 3x² + 6x + 4)
= 2(x³ + x² + 2x² + 2x + 4x + 4)
= 2[(x³ + x²) + (2x² + 2x) + (4x + 4)]
= 2[x²(x + 1) + 2x(x + 1) + 4(x + 1)]
= 2(x + 1)(x² + 2x + 4)