Tìm x biết
a) I3x-1I+1=5
b) Ix-5I-x=3
c) Ix-2I+3< hoặc=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
a) \(\left|2x\right|=3-x\)
\(\Rightarrow\orbr{\begin{cases}2x=3-x\\2x=x-3\end{cases}}\Rightarrow\orbr{\begin{cases}2x+x=3\\2x-x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=3\\x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
b) \(\left|x-1\right|=2x-1\)
\(\Rightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}}\Rightarrow\orbr{\begin{cases}x-2x=-1+1\\x+2x=1+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
a) \(|5x-3|-x=\text{}6\)
\(\Rightarrow|5x-3|=6+x\left(1\right)\)
Vì \(\Rightarrow|5x-3|\ge0\)
\(\Rightarrow6+x\ge0\)
\(\Rightarrow x\ge-6\)
(1) xảy ra\(\Leftrightarrow\orbr{\begin{cases}5x-3=6+x\\5x-3=-6-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=6+3\\5x+x=-6+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=9\\6x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=-2\end{cases}}\)
Vậy ...
a) /x+2/ - x = 2
=> /x+2/ = 2+x
=> x = 0
b) /x-3/ + x-3 = 0
=> /x-3/ = 0 + x-3 = x- 3
=> x = 0
c) /x+1/ + /x+2/ = 1
<=> /2x/ + 3 = 1
<=> /2x/ = 1- 3 = - 2
=> không có x vì /2x/ ≥ 0
d) /x- 5/ + x - 8 = 6
/x- 5/ + x = 6+8 = 14
=> chịu, bài này mik ko làm dc
=> mí bài kia ko pix có đúng ko nữa
Làm mẫu 1 phần :
a) \(|3x-1|+|x-1|=4\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(x-1=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
3x-1 x-1 1/3 1 0 0 - - - + + + +
+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)+\left(1-x\right)=4\)
\(2-4x=4\)
\(4x=-2\)
\(x=\frac{-1}{2}\)( chọn )
+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)+\left(x-1\right)=4\)
\(4x-2=4\)
\(4x=6\)
\(x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)