Tìm giá trị x để đa thức:
3x2+4y2-5x2+6y2-7x2-10y2-5 có giá trị -230
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức Q(x) có nghiệm x = -1 nên Q(-1) = 0 hay
\(5.\left(-1\right)^2-5+a^2-a=0\)
\(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Vậy a = 0 hoặc a = 1
Lời giải:
Để $Q(x)$ có nghiệm $x=-1$ thì $Q(-1)=0$
hay $5(-1)^2-5+a^2+a(-1)=0$
hay $a^2-a=0$
hay $a(a-1)=0$
$\Rightarrow a=0$ hoặc $a=1$
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
\(F\left(x\right)=2x^3-7x^2+12x+a\)
\(G\left(x\right)=x+2\)
\(F\left(x\right):G\left(x\right)=2x^2-11x+34\) dư \(a-68\)
Để \(F\left(x\right)⋮G\left(x\right)\Rightarrow a-68=0\Rightarrow a=68\)
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)
Đa thức đã cho là bậc 3 theo biến x khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
\(\Rightarrow m=5\)
\(3x^2+4y^2-5x^2+6y^2-7x^2-10y^2-5\)\(=\left(3x^2-5x^2-7x^2\right)+\left(4y^2+6y^2-10y^2\right)-5\)
\(=-9x^2-5=-\left(9x^2+5\right)=-230\)
\(\Rightarrow9x^2+5=230\Rightarrow9x^2=225\Rightarrow x^2=25\)=> x = 5 hoặc x = -5
cho điểm đi rồi trả lời.không thì thôi.