K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}-2x+ay=4\\3x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-3x\\-2x+a\left(5-3x\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-3x\\-2x+5a-3xa=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3x+5\\x\left(-3a-2\right)=4-5a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3x+5\\x\left(3a+2\right)=5a-4\end{matrix}\right.\left(1\right)\)

TH1: \(a=-\dfrac{2}{3}\)

(1) sẽ tương đương với \(\left\{{}\begin{matrix}y=-3x+5\\x\cdot0=5\cdot\dfrac{-2}{3}-4=-\dfrac{10}{3}-\dfrac{12}{3}=-\dfrac{22}{3}\left(vôlý\right)\end{matrix}\right.\)

=>Loại

TH2: a<>-2/3

(1): \(\left\{{}\begin{matrix}y=-3x+5\\x\left(3a+2\right)=5a-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5a-4}{3a+2}\\y=-3x+5=\dfrac{-3\cdot\left(5a-4\right)}{3a+2}+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5a-4}{3a+2}\\y=\dfrac{-15a+12+15a+10}{3a+2}=\dfrac{22}{3a+2}\end{matrix}\right.\)

x>0 và y>0

=>\(\left\{{}\begin{matrix}\dfrac{5a-4}{3a+2}>0\\\dfrac{22}{3a+2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a+2>0\\\dfrac{5a-4}{3a+2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>-\dfrac{2}{3}\\\dfrac{5a-4}{3a+2}>0\end{matrix}\right.\)

\(\dfrac{5a-4}{3a+2}>0\)

TH1: \(\left\{{}\begin{matrix}5a-4>0\\3a+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>\dfrac{4}{5}\\a>-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow a>\dfrac{4}{5}\)

mà a>-2/3

nên \(a>\dfrac{4}{5}\)

TH2: \(\left\{{}\begin{matrix}5a-4< 0\\3a+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a< \dfrac{4}{5}\\a< -\dfrac{2}{3}\end{matrix}\right.\)

=>\(a< -\dfrac{2}{3}\)

mà a>-2/3

nên \(a\in\varnothing\)

Vậy: \(a>\dfrac{4}{5}\) 

mà a là số nguyên nhỏ nhất

nên a=1

4 tháng 11 2019

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

10 tháng 2 2021

a, tự làm 

b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)

để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)

c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)

để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)

d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)

\(\Leftrightarrow0m=-3\)(vô lí)

e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))

để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)

\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)

28 tháng 12 2022

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

28 tháng 12 2022

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.

 

5 tháng 2 2016

mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^

25 tháng 2 2016

a) thay m=2 ... tự thay

\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)

=>2y+x-2=0(1)

=>-2y+2x-1=0(2)

=>-(2y-2x+1)=0(2)

=>2y-2x+1=0(2)

vẽ đồ thị hàm số ra

=>x=1;\(y=\frac{1}{2}\)hoặc 0,5

b,c ko biết nên ns thế nào ^^

5 tháng 2 2016

em mới lóp 6