Cho tam giác MNP có MN = 6 cm , NP = 8 cm và NP = 10 cm. Kẻ đường cao MI, gọi K là trung ddirrm của MI, A là trung điểm của NI. C/m:
a) AK vuông góc với MP, PK vuông góc với AM
b) Gọi E là trung điểm của IP. C/m tam giác AKE vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NP=NI+IP
=5+7=12(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NI\cdot NP\\MP^2=PK\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{5\cdot12}=2\sqrt{15}\left(cm\right)\\MP=\sqrt{7\cdot12}=2\sqrt{21}\left(cm\right)\end{matrix}\right.\)
b: trung tâm là cái gì vậy bạn?
c: Nếu kẻ như thế thì H trùng với I rồi bạn
Sorry, nhưng bạn tự vẽ hình nha!
a.
Xét tam giác MIN vuông tại M và tam giác KIN vuông tại K có:
NI là cạnh chung
N1 = N2 (Ni là tia phân giác của tam giác MNP)
=> Tam giác MIN = Tam giác KIN (cạnh huyền - góc nhọn)
=> MI = KI (2 cạnh tương ứng)
b.
MI = KI (theo câu a)
NM = NK (tam giác MIN = tam giác KIN)
=> NI là đường trung trực của MK
c.
Tam giác KIP vuông tại K có:
IP > IK (IP là cạnh huyền )
mà IK = IM (theo câu a)
=> IP > IM
d.
Tam giác MNP vuông tại M có:
MPN + MNP = 90
=> MPN = 90 - MNP
MNP = 90 - MPN
OP là tia phân giác của MPN
\(\Rightarrow P1=P2=\frac{MPN}{2}=\frac{90-MNP}{2}\)
ON là tia phân giác của MNP
\(\Rightarrow N1=N2=\frac{MNP}{2}=\frac{90-MPN}{2}\)
Tam giác ONP có:
\(O+P1+N1=180\)
\(O+\frac{90-MNP}{2}+\frac{90-MPN}{2}=180\)
\(O+\frac{90-MNP+90-MPN}{2}=180\)
\(O+\frac{180-\left(MNP+MPN\right)}{2}=180\)
\(O+\frac{180-90}{2}=180\)
\(O+\frac{90}{2}=180\)
\(O+45=180\)
\(O=180-45\)
\(O=135\)
a) ta có :
KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)
suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)
b) ta có : MI = KP (tc hai đường chéo HCN)
suy ra : MF = FI (gt)
KF = P'F = 1/2KP' = 1/2 MF(tc)
vậy 3 đm K,F,P' thẳng hàng
c) ta có :
KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)
suy ra :
KI song song vs MP , có PI = IN (gt)
suy ra : tam giác MNP có KI là ĐBH
suy ra IK bằng 1/2 MP (tc)
có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc) (1)
có IP' = P'L (tc) (2)
mà IL vuông góc vs MP (gt) (3)
vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi