tìm x biết
\(\frac{x+2}{2012}+\frac{x+3}{2011}+\frac{x+4}{2010}+\frac{x+5}{2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{x+2}{2012}+\frac{x+3}{2011}=\frac{x+4}{2010}+\frac{x+5}{2009}\)
\(\Rightarrow\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1\)
\(\frac{x+2}{2012}+\frac{2012}{2012}+\frac{x+3}{2011}+\frac{2011}{2011}=\frac{x+4}{2010}+\frac{2010}{2010}+\frac{x+5}{2009}+\frac{2009}{2009}\)
\(\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}\)
\(\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}=0\)
\(\left(x+2014\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\ne0\)
nên \(x+2014=0\)
\(x=-2014\)
Ta có :
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+\frac{x-4}{2009}+\frac{x-2021}{2}=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+\left(\frac{x-4}{2009}-1\right)+\left(\frac{x-2021}{2}+4\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+\frac{x-2013}{2009}+\frac{x-2013}{2}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\ne0\)
Nên \(x-2013=0\)
\(\Rightarrow\)\(x=2013\)
Vậy \(x=2013\)
Chúc bạn học tốt ~
\(\frac{x+1}{2013}+\frac{x}{2012}+\frac{x-1}{2011}=\frac{x-2}{2010}+\frac{x-3}{2009}+\frac{x-4}{2008}\)
\(\Leftrightarrow\frac{x+1}{2013}-1+\frac{x}{2012}-1+\frac{x-1}{2011}-1=\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1\)
\(\Leftrightarrow\frac{x-2012}{2013}+\frac{x-2012}{2012}+\frac{x-2012}{2011}=\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2013}+\frac{x-2012}{2012}+\frac{x-2012}{2011}-\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Leftrightarrow x-2012=0\). Do \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
\(\Leftrightarrow x=2012\)
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)
\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)
\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
\(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)\(\Leftrightarrow\)\(\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+1}{2012}+1\right)\)
\(=\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\)
Biểu thức trên chi thỏa mãn khi x+2013=0
\(\Rightarrow x=-2013\)
mk nghĩ là -2013 vì nếu thay x=-2013 vào thì các phân số sẽ bằng -1.
nếu cộng lại thì đc -2
k nhé
de thieu
x=-2004