tìm MIN của biểu thức
\(B=3x^2+y^2+4x-y.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1;y\ge25\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)
Vì x>=1,y>=25 => x-1>=0,y-25>=0
=> D >= 0
Dấu "=" xảy ra <=> x=1,y=25
Vậy MinD=0 khi x=1,y=25
Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)
=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)
Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)
Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:
\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)
=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)
Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)
Dấu "=" xảy ra <=> x=2,y=50
Vậy MaxD = 1/5 khi x=2,y=50
A = \(x^2\) - 6x - 1
= (\(x^2\) - 2.x.3 + \(3^2\)) - \(3^2\) - 1
= \(\left(x+3\right)^2\) - 27 - 1
= \(\left(x+3\right)^2\) - 28
Ta có: \(\left(x+3\right)^2\) ≥ 0 ∀ x
⇒ \(\left(x+3\right)^2-28\) ≥ - 28
Hay A ≥ - 28
Dấu "=" xảy ra ↔ x + 3 = 0
x = - 3
Vậy min A = - 28 ↔ x = - 3
B = \(x^2\) + 3x + 7
= (\(x^2\) - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\)) \(-\frac{3}{2}^2\) + 7
= \(\left(x+\frac{3}{2}\right)^2\) \(-\frac{9}{4}\) + 7
= \(\left(x+\frac{3}{2}\right)^2\) + \(\frac{19}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\) ≥ 0 ∀ x
⇒ \(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\) ≥ \(\frac{19}{4}\)
Hay B ≥ \(\frac{19}{4}\)
Dấu "=" xảy ra ↔ \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy min B = \(\frac{19}{4}\) ↔ \(x=-\frac{3}{2}\)
\(\Leftrightarrow C=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+5\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+5\ge5\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow D=\left(x^4-4x+3\right)+2017\)
\(\Leftrightarrow\)\(D=\left(x^4-2x^3+x^2\right)+\left(2x^3-4x^2+2x\right)+\left(3x^2-6x+3\right)+2017\)
\(\Leftrightarrow D=x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)+2017\)
\(\Leftrightarrow D=\left(x^2+2x+3\right)\left(x-1\right)^2+2017\ge2017\)
Dấu "=" xảy ra ⇔ x = 1
\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)
Biểu thức này không tồn tại max mà chỉ tồn tại min
\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)
\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)
\(B=3x^2+y^2+4x-y=3\left(x^2+\frac{4}{3}x\right)+\left(y^2-2.\frac{1}{2}.y+\frac{1}{4}\right)-\frac{1}{4}\)
\(=3\left(x^2+2.\frac{2}{3}.x+\frac{4}{9}\right)+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}=3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge-\frac{19}{12}\)
Dấu "=" xảy ra khi x=-2/3 và y=1/2
\(B=3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{4}{3}-\frac{1}{4}=3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge\frac{-19}{12}\)
Vậy \(MinB=\frac{-19}{12}\)khi \(\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{1}{2}\end{cases}}\)