n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
vì sao 3k+1=9k^2 6k+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pn lớp mấy vậy
như vậy là pn phải cố hỉu ik chứ
có 6k và 12k vì khai triển hằng đẳng thức ra:
\(\left(3k+1\right)^2=9k^2+6k+1.\)
tương tự với \(\left(3k+2\right)^2=9k^2+12k+4\)
TH p=3k+2 sai:vì \(\left(3k+2\right)^2-1=9k^2+12k+3\)
+)nếu chưa học về hằng đẳng thức thì có thể nhân ra \(\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=9k^2+3k+3k+1=9k^2+6k+1\)
còn nếu chưa hiểu thì có thể hiểu
3k+1 chia 3 dư 1=>\(\left(3k+1\right)^2\)chia 3 dư 1=>\(\left(3k+1\right)^2-1⋮3\)
tương tự với Th còn lại
Khi trong bài toán đè bài bắt chứng minh chia hết, hoặc chứng minh phản chứng
Ta có \(6k^2+48k-12k+12=6k^2-15k-38+57k\)
\(\Leftrightarrow36k+12=42k-38\Leftrightarrow6k=50\Leftrightarrow k=\dfrac{25}{3}\)
Số hạng chia hết cho a có dạng x = a.k (k ∈ N)
Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)
ví dụ là 3k + 1 = 3 . 4 + 1 = 13
13 khi chia cho 3 thì còn dư 1 3k + 2 cũng vậy , 2 là số dư của phép tính đó