\(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}\)
<Hạn thứ ba tuần sau nha >(trình bày chi tiết hộ mk) ai tl đúng 3tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
Đặt: \(M=92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}\)
Tách 92 thành tổng của 92 số 1.
\(M=1-\frac{1}{9}+1-\frac{2}{10}+...+1-\frac{91}{99}+1-\frac{92}{100}\)
\(M=\frac{8}{9}+\frac{8}{10}+...+\frac{8}{99}+\frac{8}{100}\)
\(M=\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}\)
Thay M vào A:
\(\Rightarrow A=\frac{\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
\(\Rightarrow A=\frac{40\cdot\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}{\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}\)
\(\Rightarrow A=40\)
PP/ss: Tớ ko chắc đâu :)))
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
\(\frac{7}{4}-y\)x \(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
\(\frac{7}{4}-y\)x \(\frac{5}{6}=\frac{5}{6}\)
\(y\) x \(\frac{5}{6}=\frac{7}{4}-\frac{5}{6}\)
\(y\) x \(\frac{5}{6}=\frac{11}{12}\)
y == \(\frac{11}{12}:\frac{5}{6}\)
y == \(\frac{11}{10}\)
Ta có \(\frac{7}{4}-\frac{5}{6}y=\frac{5}{6}\)
\(\frac{7}{4}=\frac{5}{6}y+\frac{5}{6}\)
\(\frac{7}{4}=\frac{5}{6}\left(y+1\right)\)
\(\frac{7}{4}:\frac{5}{6}=y+1\)
\(\frac{7}{4}\cdot\frac{6}{5}=\frac{21}{10}=y+1\)
\(y=\frac{21}{10}-1=\frac{11}{10}\)
ta có: C = 1/32 + 1/34 + 1/36 +...+ 1/3100 => 9C = 1 + 1/32 +1/34 +...+1/398
=> 9C - C = (1 + 1/32 + 1/34 +...+1/398 ) - (1/32 +1/34 + 1/36 +...+ 1/3100)
=> 8C = 1 - 1/3100 => C = (1 - 1/3100 ) / 8
đúng ko nhỉ
Nhân vô rồi chuyển dấu lên và nhóm nhân -1ra ngoài rồi trg ngoặc là dãy có quy luật giải dãy đó r nhân phá ngoặc
=\(\frac{3\left(\frac{1}{1}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{2}{4}+\frac{2}{6}+\frac{2}{8}}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)
=\(\frac{3}{5}+\frac{2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)=\(\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
\(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}\)
\(=\frac{1}{1-\frac{1}{\frac{1}{2}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}\)
\(=\frac{1}{1-2}+\frac{1}{1+\frac{2}{3}}=-1+\frac{1}{\frac{5}{3}}\)
\(=-1+\frac{3}{5}=\frac{-2}{5}\)
\(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}} =\frac{1}{\frac{1-\frac{1}{2}-1}{1-\frac{1}{2}}}+\frac{1}{\frac{1+\frac{1}{2}+1}{1+\frac{1}{2}}}\)
\(=\frac{1-\frac{1}{2}}{\frac{-1}{2}}+\frac{1+\frac{1}{2}}{2+\frac{1}{2}}=\frac{\frac{2-1}{2}}{\frac{-1}{2}}+\frac{\frac{2+1}{2}}{\frac{4+1}{2}}\)
\(=\frac{\frac{3}{2}}{\frac{-1}{2}}+\frac{\frac{3}{2}}{\frac{5}{2}}=\frac{3}{2}.\frac{2}{-1}+\frac{3}{2}.\frac{2}{5}\)
\(=-3+\frac{3}{5}=\frac{-15+3}{5}=\frac{-12}{5}\)