K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2023

Ta có: \(x\left(5-x\right)\ge0\)

+) TH1: \(\left\{{}\begin{matrix}x>0\\5-x>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 5\end{matrix}\right.\Rightarrow0< x< 5\)

Mà \(x\in\mathbb{Z}\) nên: \(x\in\left\{1;2;3;4\right\}\) (nhận)

+) TH2: \(\left[{}\begin{matrix}x=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\left(nhận\right)\)

+) TH3: \(\left\{{}\begin{matrix}x< 0\\5-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x>5\end{matrix}\right.\left(vô.lí\right)\)

=> loại

Vậy: ...

5 tháng 10 2017

giúp mk vs

29 tháng 10 2021

\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)

\(=\dfrac{-3}{2\sqrt{x}+4}\)

Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)

\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)

\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)

hay \(0\le x< \dfrac{25}{4}\)

 

28 tháng 10 2021

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3}{\sqrt{x}-3}\)

28 tháng 10 2021

bạn làm đc phần b ko?

4 tháng 12 2019

Đặt: \(\sqrt{x}=t\)\(t\ge0;t\ne1\)) => \(A\ne0\)

Ta có: \(A=\frac{t-1}{t^2+t+1}\)

<=> \(At^2+At+A=t-1\)

<=> \(At^2+\left(A-1\right)t+\left(A+1\right)=0\) (1)

(1) có nghiệm <=> \(\Delta\ge0\)<=> \(-3A^2-6A+1\ge0\)<=> \(-1-\frac{2}{\sqrt{3}}\le A\le-1+\frac{2}{\sqrt{3}}\)

Theo đề ra A thuộc Z ; A khác 0

=> A \(\in\){ - 2; -1 }

+) Với A = - 2  thế vào (1) ta có: \(-2t^2-3t-1=0\) <=> \(\orbr{\begin{cases}t=-1\left(loai\right)\\t=-\frac{1}{2}\left(loai\right)\end{cases}}\)

+) Với A = -1 thế vào (1) ta có: \(-t^2-2t=0\)<=> \(\orbr{\begin{cases}t=0\left(tm\right)\\t=-2\left(loai\right)\end{cases}}\)

Với t = 0 ta có: \(\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

Vậy x = 0 ; A = -1

4 tháng 12 2019

E cảm ơn  cô

7 tháng 7 2017

a. P=\(\frac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\cdot\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)

b. P=\(\frac{5}{\sqrt{x}+3}\)

P nguyên \(\Leftrightarrow\sqrt{x}+3\inƯ\left(5\right)\Rightarrow\sqrt{x}+3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2\right\}\)\(\Rightarrow x=4\)

Vậy x=4 thì P nguyên  

4 tháng 7 2018

con ma