Cho x,y > 0 và x+y=1. Tìm GTLN của biểu thức A = x3y5+x5y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài cho x+y=2
vậy : \(\left(x+y\right)^2=4\) định lí Mori
\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)
mặt khác ta có
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)
suy ra
\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)
có x+y=2
\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)
ta lại có
\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)
\(p\le\frac{\left(4-2xy\right)^2}{2}\)
có 2xy=2 ( cmr)
\(P\le\frac{\left(4-2\right)^2}{2}=2\)
vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1
\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)
\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)
dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)
vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2
Nếu \(y\le0\Rightarrow x^2y^3\le0.\)(1)
Nếu \(y>0\)thì :
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\frac{x}{2}\frac{x}{2}\frac{y}{3}\frac{y}{3}\frac{y}{3}}=5\sqrt[5]{\frac{x^2y^3}{108}}.\)(bất đẳng thức Cauchy)
Suy ra \(\frac{x^2y^3}{108}\le\left(\frac{1}{5}\right)^5\Leftrightarrow x^2y^3\le\frac{108}{3125}\)(2)
Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{2}{5}\end{cases}.}\)
Từ (1) và (2) suy ra Giá trị lớn nhất của \(x^2y^3=\frac{108}{3125}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}.}\)