Tìm x,y,z biết : x/5=y/3=z/2 và x-3y=20
Mọi người giúp em với ạ. Cảm ơn mọi người nhiều nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
Ta có: \(14x=21y=16z\)=> \(\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\) => \(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{14}}=\frac{672}{43}\\\frac{y}{\frac{1}{21}}=\frac{672}{43}\\\frac{z}{\frac{1}{16}}=\frac{672}{43}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{672}{43}.\frac{1}{14}=\frac{48}{43}\\y=\frac{672}{43}.\frac{1}{21}=\frac{32}{43}\\z=\frac{672}{43}.\frac{1}{16}=\frac{42}{43}\end{cases}}\)
Vậy ...
\(\Rightarrow\frac{x}{\frac{1}{14}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
\(\Rightarrow\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{1}{7}}=\frac{y}{\frac{1}{21}}=\frac{z}{\frac{1}{16}}=\frac{2x+y-z}{\frac{1}{7}+\frac{1}{21}-\frac{1}{16}}=\frac{2}{\frac{43}{336}}=\frac{672}{43}\)
Suy ra \(\frac{2x}{\frac{1}{7}}=\frac{672}{43}\Rightarrow x=\frac{48}{43}\)
\(\frac{y}{\frac{1}{21}}=\frac{672}{43}\Rightarrow y=\frac{32}{43}\)
\(\frac{z}{\frac{1}{16}}=\frac{672}{43}\Rightarrow z=\frac{42}{43}\)
Vậy \(x=\frac{48}{43};y=\frac{32}{43};z=\frac{42}{43}\)
Chúc bạn học tốt !!!
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+0.4\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....