K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

A lớn hơn B là 2n + 20 

Nếu n = 3 thì 4n + 27 = 39

                      2n + 7 = 13

39 chia hết cho 13 . 

Vậy n = 3 

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.

9 tháng 8 2017

Giả sử : \(2n+3⋮d\)

               \(n+2⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)

\(\Leftrightarrow\left(2n+3\right)-2\left(n+2\right)⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d\inƯ\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\frac{2n+3}{n+2}\) là phân số tối giản

9 tháng 8 2017

Cho d là ước chung lớn nhất của 2n+ 3 và n + 2 

=> ( 2n+3 ) - 2( n + 2 ) chia hết cho d

      -1 chia hết cho d

Vậy 2n+3 / n + n tối giản . 

3 tháng 11 2018

Gọi d là UCLN của 7n + 10 và 5n + 7 

Khi đó : 7n + 10 chia hết cho d , 5n + 7 chia hết cho d

<=> 5(7n + 10) chia hết cho d , 7(5n + 7) chia hết cho d

<=> 35n + 50 chia hết cho d , 35n + 49 chia hết cho d

<=> (35n + 50) - (35n + 49) chia hết cho d

<=> 35n + 50 - 35n - 49 chia hết cho d

<=> 1 chia hết cho d

=> d là ư(1) 

=> d = 1 

Vậy đpcm

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n1213n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+94n16n+9⋮4n−1

2.(6n+9)4n1⇒2.(6n+9)⋮4n−1

12n+184n1⇒12n+18⋮4n−1

12n3+214n1⇒12n−3+21⋮4n−1

3.(4n1)+214n1⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n1)4n1214n13.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n114n−1≥−1 do nNn∈N

4n1{1;3;7}⇒4n−1∈{−1;3;7}

4n{0;4;8}⇒4n∈{0;4;8}

n{0;1;2}

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

1 tháng 8 2017

a. n=3,0,-2,-5

b,n=2,0,-1,-3

tk mk nha