cho tứ giác abcd trong đó CD>AB; E, F lần lượt trung điểm BD và AC. Cmr nếu EF + CD - AB/2 thì tứ giác abcd là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
Giả sử tứ giác ABCD là hình thang ( AB // CD)
Xét hình thang ABCD ta có:
E là trung điểm AD (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của hình thang ABCD
=> EF = ( AB + CD)/2
Vậy tứ giác ABCD là hình thang ( AB // CD) thì EF = ( AB + CD)/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
*Chứng minh EF // AB // CD
Gọi P là trung điểm AD có ngay:PF // AB (1) (PF là đường trung bình tam giác DAB)
Lại có PE // DC(là đường trung bình tam giác ADC) và DC // AB nên PE // AB(2)
Từ (1) và (2) theo tiên đề Ơclit suy ra P, E, F thẳng hàng. Mà PF // AB -> FE // AB(3)
Lại có PE // DC -> FE // DC (4). Từ (3) và (4) suy ra đpcm.
* Chứng minh EF = \(\frac{CD-AB}{2}\)= \(\frac{CD}{2}-\frac{AB}{2}\)
Do PE = 1/2 CD; PF = 1/2 AB và P, E, F thẳng hàng nên:
PF+FE=PE⇔\(\frac{1}{2}\)AB+FE=\(\frac{1}{2}\)CD⇔FE=\(\frac{CD-AB}{2}\)
=> đpcm
a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)
<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)
<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)
=>a=b=c=d
=> ABCD là hình thoi