K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đề bài này chưa đủ dữ kiện để tính góc OAC nha bạn 

ΔOAC cân tại O

mà OD là đường trung tuyến

nên OD\(\perp\)AC và OD là phân giác của góc AOC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

mà OD\(\perp\)AC

nên OD//CB

b: Xét ΔOAE và ΔOCE có

OA=OC

\(\widehat{AOE}=\widehat{COE}\)

OE chung

Do đó: ΔOAE=ΔOCE

=>\(\widehat{OAE}=\widehat{OCE}=90^0\)

=>EC là tiếp tuyến của (O)

1 tháng 12 2023

mik nhầm bạn ơi

ở câu b là tính số đo góc ODA....

19 tháng 7 2018

a, Dễ thấy  A M B ^ = 90 0 hay E M F ^ = 90 0  tiếp tuyến CM,CA

=> OC ⊥ AM =>  O E M ^ = 90 0 Tương tự =>  O F M ^ = 90 0

Chứng minh được ∆CAO = ∆CMO =>  A O C ^ = M O C ^

=> OC là tia phân giác của A M O ^

Tương tự OD là tia phân giác của  B O M ^  suy ra OC ⊥ OD <=>  C O D ^

b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

=>  O E M ^ = 90 0  chứng minh tương tự  O F M ^ = 90 0

Vậy MEOF là hình chữ nhật

c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.

19 tháng 12 2021

a: Xét (O) có

DA là tiếp tuyến

DB là tiếp tuyến

Do đó: OD là tia phân giác của góc AOB(1)

Xét (O) có

EA là tiếp tuyến

EC là tiếp tuyến

Do đó: OE là tia phân giác của góc AOC(2)

Từ (1) và (2) suy ra OD⊥OE

5 tháng 12 2015

tương tự bài dưới mk giải ấy

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)