Cho tam giác ABC , AB=AC .Trên tia AB lấy điểm M , tia AC lấy điểm N sao cho AM=AN . Nối BN và CN cắt nhau tại y . Chứng minh
a) BN=CM
b)tam giác BMC = tam giác CNB, tam giác ByM= tam giác CyN
c)Ay là phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
a: Xét ΔADM và ΔCBM có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔADM=ΔCBM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
hay CD\(\perp\)AC