OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= 1.2.3.......2018.(1+\(\frac{1}{2}\)+\(\frac{1}{3}\)+........+\(\frac{1}{2017}\))
Cm : A là số tự nhiên
A chia hết cho 2019
Cho \(A=1.2.3....2015.2016.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)
Chứng tỏ A là số tự nhiên chia hết cho 2017
CMR: \(A=1.2.3...2018.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)chia hết cho 2019
Chứng minh rằng số tự nhiên A chia hết cho 2017:
A=1.2.3...2016.\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)\)
Bài 1:Tìm số tự nhiên có 4 chữ số sao cho số đó vừa là số chính phương vừa là 1 lập phương
Bài 2: Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}+\frac{1}{2019}\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
Hãy so sánh A/B với 1/2018
A/B>1/2018
\(\frac{A}{B}>\frac{1}{2018}\)
Chứng minh số tự nhiên A chia hết cho 2017
A = 1.2.3.........2016.\(\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\right)\)
Các bạn trả lời hộ tớ với, tớ đang cần gấp:
Cho A=1.2.3...2018.(1+1/2+1/3+...+1/2017+1/2018)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2019
A = 1.2.3.......2016.\(\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2016}\right)\)
Mk đag cần rất gấp bn giải nhanh và chính xác mk sẽ tick cho!!!
Cho \(A=1-\frac{2017}{2019}+\left(\frac{2017}{2019}\right)^2-\left(\frac{2017}{2019}\right)^3+...+\left(\frac{2017}{2019}\right)^{2018}\)
Chứng minh A không là số nguyên.
Cho \(A=1.2.3...2018\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\).CMR: \(A⋮2019\)