K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

thiếu dữ liệu hay s ý?

28 tháng 11 2023

\(x^2\) + 357 = y2 ⇒ y2 > 357 mà y là số nguyên tố nên \(y\) là số lẻ

⇒ y2 là số lẻ. ⇒ y2 - 357 là số chẵn mà \(x^2\) = y2  - 357

⇒ \(x^2\) là số chẵn; \(x\) \(\in\) P ⇒ \(x\) = 2

Thay \(x\) = 2 vào biểu thức \(x^2\) + 357  = y2 ta có:

                                          22 + 357  = y2

                                          y2           = 361

                                           y           = \(\pm\) 19

Vì y là số nguyên tố nên y = 19

Kết luận hai số nguyên tố \(x\); y thỏa mãn đề bài là: 

(\(x\); y) = (2; 19)

 

21 tháng 10 2020

Có p; q ; p -q ; p + q là các số nguyên tố

=> p > q

Th1: q > 2 

=> p; q là số chẵn 

=> p - q ; p + q là các số chẵn => loại 

Th2: q = 2 

Ta tìm p để p; p - 2 ; p + 2 là các số nguyên tố

+) Nếu p - 2 = 3 => p = 5 => p + 2 = 7 là các số nguyên tố => p = 5 thỏa mãn

+) Nếu p - 2 = 3k + 1 => p = 3 k + 3 không là số nguyên tố=> loại 

+) Nếu p - 2 = 3k + 2 => p = 3k + 4 => p + 2 = 3k + 6 không là số nguyên tố => loại 

Vậy p = 5; q = 2

5 tháng 7 2017

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

26 tháng 7 2023

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:

2a + 1 = n^2 ﴾1﴿

3a +1 = m^2 ﴾2﴿

từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:

2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1

=> a = 2k﴾k+1﴿

vậy a chẵn .

a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1

﴾1﴿ + ﴾2﴿ được:

5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1

=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿

mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8

ta cần chứng minh a chia hết cho 5:

chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9

xét các trường hợp:
 a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿

=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40

hay : a là bội số của 40

18 tháng 10 2015

x = 2 ; y = 3             

25 tháng 7 2016

X2 y3

25 tháng 7 2016

giải ra giùm mk luôn  nha

20 tháng 2 2018

3 năm rồi ko có ng nào trả lời