K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021
Có: a=1, b=-2m , c=2m-3 ∆= b²-4ac= (-2m)²-4.1.(2m-3) = 4m²-4.(2m-3) = 4m²-8m+12
13 tháng 5 2021

\(\Delta=\left(-2m\right)^2-4.\left(2m-3\right)\)

   \(=4m^2-8m+12\)

\(\Delta'=m^{^2}-2m+3\)

     \(=\left(m-1\right)^2+2\)

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha

Δ=(2m)^2-4(-2m-1)

=4m^2+8m+4=(2m+2)^2

Để pt có hai nghiệm pb thì 2m+2<>0

=>m<>-1

x1+x2=-2m; x1x2=-2m-1

x1^2+x2^2=(x1+x2)^2-2x1x2

=(-2m)^2-2(-2m-1)

=4m^2+4m+2

\(\dfrac{6}{x1}=\dfrac{x1+1}{x2}\)

=>x1^2+x1-6x2=0

=>4m^2+4m+2-x2^2+-2m-x2-6x2=0

=>-x2^2-7x2+4m^2+2m+2=0

=>\(x_2^2+7x_2-4m^2-2m-2=0\)(1)

\(\text{Δ}=7^2-4\left(-4m^2-2m-2\right)\)

\(=49+16m^2+8m+8\)

=16m^2+8m+57

=16m^2+8m+1+56=(4m+1)^2+56>=56>0

=>(1)luôn có nghiệm

31 tháng 12 2022

Phương trình hoành độ giao điểm là:

x^2-2mx+2m-5=0

Δ=(-2m)^2-4(2m-5)

=4m^2-8m+20

=4m^2-8m+4+16

=(2m-2)^2+16>=16>0 với mọi m

=>(P) luôn cắt (d) tại hai điểm phân biệt

\(x_1^2+x_2^2=34\)

=>(x1+x2)^2-2x1x2=34

=>\(\left(2m\right)^2-2\left(2m-5\right)=34\)

=>4m^2-4m+10-34=0

=>4m^2-4m-24=0

=>m^2-m-6=0

=>(m-3)(m+2)=0

=>m=3 hoặc m=-2

30 tháng 4 2022

Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?

30 tháng 4 2022

Hay là \(\left(x_1^2-2mx_2+3\right)\left(x_2^2-2mx_1-2\right)=50\) bạn nhỉ?

29 tháng 11 2023

\(x^2+2mx-2m+3>=0\)(1)

\(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-2m+3\right)\)

\(=4m^2+8m-12\)

\(=4\left(m^2+2m-3\right)=4\left(m+3\right)\left(m-1\right)\)

Để bất phương trình (1) đúng với mọi x thuộc R thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(m+3\right)\left(m-1\right)< =0\\1>0\end{matrix}\right.\)

=>\(\left(m+3\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+3>0\\m-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-3\\m< 1\end{matrix}\right.\)

=>-3<m<1

TH2: \(\left\{{}\begin{matrix}m+3< 0\\m-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

=>\(m\in\varnothing\)

21 tháng 7 2019

Hỏi đáp Toán

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)

\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)

Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4m^2+2m^2-4m+3=6m^2-4m+4\)

bạn kiểm tra lại đề xem có vấn đề gì ko ? 

NV
23 tháng 1 2022

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=\left(2m\right)^2+2m^2-4m+3\)

\(=6m^2-4m+3\)

Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)

\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)