K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

S o B H A D G d H' C K

Câu a bạn tự tính nhé!

Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\) 

Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.

Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\) 

Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)

 

 

31 tháng 3 2018

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên

Chọn hệ trục tọa độ Oxyz như hình vẽ. Chọn a = 2.

Khi đó: 

Ta có mặt phẳng (ABCD) có vecto pháp tuyến là 

Mặt phẳng (GMN) có vecto pháp tuyến là 

 

Gọi α là góc giữa hai mặt phẳng (GMN) và (ABCD)

Ta có: 

11 tháng 8 2019

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên  S O ⊥ A B C D

24 tháng 9 2018

Đáp án B. 

Gọi I là trung điểm của SP. Theo định lý Talet:

d 1 H M N = 1 2 d S H M N . Ta cần tính  d S H M N .

Bước 1: Tìm  V S . H M N

Ta có: 

V S . H M N V S . H A D = 1 2 . 1 2 = 1 4 ; V S . H A D V S . A B C D = 1 4

Giả sử a = 1

Dễ thấy 

V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 2 . 3 2 = 1 4

⇒ V S . H M N = 1 16 . 1 4 = 1 64 .

Bước 2: Tìm S H M N . Ta có: M H → = − 1 2 B S → và  M N → = 1 2 B C → ⇒ H M N = 180 ° − S B C .

Do đó 

sin H M N = sin S B C ⇒ S H M N = 1 2 M H . M N . sin H M N = 1 4 . S S B C .

Tam giác SBC có SB = BC = 1; 

S C = S H 2 + H C 2 = 2 S H = 6 2 ⇒ S S B C = 15 8 .

Do đó  S H M N = 1 4 . 15 8 = 15 32 .

Bước 3: Sử dụng công thức: 

d S H M N = 3. V S . H M N S H M N = 3 64 . 32 15 = 15 10 ⇒ d I H M N = 1 2 . 15 10 = 15 20 .

 

28 tháng 8 2019

Đáp án là D

9 tháng 11 2019

Đáp án D

25 tháng 4 2019