Cho đường tròn (O ; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp tuyến). Gọi H là giao điểm của OA và BC. a) Chứng minh: OA vuông góc BC và OH.OA=R² b) Kẻ đường kính BD của (O), AD cắt (O) tại E. Chứng minh: AH.AO= AE.AD c) Chứng minh: HC là phân giác của góc DHE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')

Băng Băng 2k6Vũ Minh TuấnNguyễn Việt LâmHISINOMA KINIMADONguyễn Lê Phước ThịnhNguyễn Thị Ngọc ThơNguyễn Thanh HiềnQuân Tạ Minhtth

cho tam giac abc ngoai tiep duong tron tam O va noi tiep duong tron tam O' ke duong thang AO cat O' tai D. Cm:CD=BD=OD
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(1\right)\)
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE làđường cao
nên \(AE\cdot AD=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AO=AE\cdot AD\)