Cho ΔABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm
K sao cho AK = AH. Kẻ KD⊥AC (DϵBC). Chứng minh:
a) AHD = AKD
b) AD là đường trung trực của đoạn thẳng HK
c) AD là tia phân giác của góc HAK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AH=AK
AD chung
=>ΔAHD=ΔAKD
b: AK=AH
DH=DK
=>AD là trung trực của HK
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(Cạnh huyền-cạnh góc vuông)
Lời giải:
a) Xét tam giác $AHD$ và $AKD$ có:
$\widehat{AHD}=\widehat{AKD}=90^0$
$AD$ chung
$AH=AK$ (gt)
$\Rightarrow \triangle AHD=\triangle AKD$ (ch-cgv)
b)
Vì $\triangle AHD=\triangle AKD$ nên $DH=DK$
Mà $AH=AK$
Kết hợp 2 điều này lại suy ra $AD$ là trung trực của $HK$
Ta có đpcm.
GiẢI:
VẼ DG vuông góc vối AH (G thuộc AH). Suy ra: DG//BC.
Ta có:
Góc BAH = góc BCA ( cùng phụ góc B)
Mà góc BCA = góc GDA (góc trong cùng phía)
Do đó: góc BAH = góc GDA
Xét hai tam giác ABH và DAG, ta có:
ü góc BAH = góc GDA (chứng minh trên)
ü AB=AD ( giả thuyết)
ü ABH vuông tại H, và AHG vuông tại G.
Nếu học tới các trường hợp bằng nhau của tam giác vuông thì ghi là:
Tam giác ABH = tam giác DAG (cạnh huyền góc nhon)
Nếu chưa học tới thì ghi:
Tam giác ABH = tam giác DAG (góc cạnh góc)
Suy ra: AH=DG
Lại có: DG=HE (vì EDGH là hình chủ nhật)
Vậy AH=HE
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
1:
a: Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
=>IA=IK
b: ΔBAI=ΔBKI
=>\(\widehat{BAI}=\widehat{BKI}=90^0\)
=>IK\(\perp\)BC
mà AH\(\perp\)BC
nên AH//KI
c: BA=BK
=>B nằm trên đường trung trực của AK(1)
IA=IK
=>I nằm trên đường trung trực của AK(2)
Từ (1) và (2) suy ra BI là đường trung trực của AK
d: BA=BK
=>ΔBAK cân tại B
=>\(\widehat{BAK}=\widehat{BKA}\)
\(\widehat{BAK}+\widehat{CAK}=\widehat{BAC}=90^0\)
\(\widehat{BKA}+\widehat{HAK}=90^0\)(ΔKAH vuông tại H)
mà \(\widehat{BAK}=\widehat{BKA}\)
nên \(\widehat{CAK}=\widehat{HAK}\)
=>AK là phân giác của góc HAC
2:
a: Ta có: \(\widehat{ANI}=\widehat{BNH}\)(hai góc đối đỉnh)
\(\widehat{BNH}+\widehat{HBN}=90^0\)(ΔHNB vuông tại H)
Do đó: \(\widehat{ANI}+\widehat{HBN}=90^0\)
mà \(\widehat{HBN}=\widehat{ABI}\)
nên \(\widehat{ANI}+\widehat{ABI}=90^0\)
mà \(\widehat{ABI}+\widehat{AIN}=90^0\)(ΔABI vuông tại A)
nên \(\widehat{ANI}=\widehat{AIN}\)
b: Xét ΔBAN và ΔBKN có
BA=BK
\(\widehat{ABN}=\widehat{KBN}\)
BN chung
Do đó; ΔBAN=ΔBKN
=>NA=NK
c: BI là trung trực của AK
=>BI\(\perp\)AK
Xét ΔBAK có
BI,AH là đường cao
BI cắt AH tại N
Do đó: N là trực tâm của ΔBAK
=>KN\(\perp\)AB
3:
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
ΔCAE cân tại C
mà CB là đường cao
nên CB là phân giác của \(\widehat{ACE}\)
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm