Cho tam giác ABC vuông tại A, có đường trung tuyến CM. Kẻ đường cao MH của tam giác MBC., và đặt trên tia AB đoạn AD=BH.
Chứng minh tam giác CDH cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
b: Xét ΔABC có
M là trung điểm của CB
MH//AB
Do đó: H là trung điểm của AC
Xét tứ giác AMCD có
H là trung điểm chung của AC và MD
nên AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Để AMCD là hình vuông thì \(\widehat{MCD}=90^0\)
AMCD là hình thoi
=>AC là phân giác của \(\widehat{MAD}\) và CA là phân giác của \(\widehat{MCD}\)
=>\(\widehat{MCA}=\dfrac{1}{2}\cdot\widehat{BAC}=45^0\)
=>\(\widehat{ACB}=45^0\)
a: Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
d: Xét ΔAED có
AH/AD=AK/AE
nên HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE