K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

12 tháng 3 2021

Cách khác: Ta có \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x+1\right)^2=32x\).

Từ đó \(32x⋮\left(x+1\right)^2\).

Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).

+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)

+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)

+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).

Vậy...

NV
12 tháng 3 2021

\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)

\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)

\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)

Do \(x+1\ge2\) nên chỉ có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\) 

TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)

Bạn tự giải

16 tháng 12 2023

Do x=ƯCLN(2y+5;3y+2) nên ta có:

{(2�+5)⋮�(3�+2)⋮�(2y+5)x(3y+2)x⇒{3(2�+5)⋮�2(3�+2)⋮�3(2y+5)x2(3y+2)x

⇔{(6�+15)⋮�(6�+4)⋮�(6y+15)x(6y+4)x

⇒[(6�+15)−(6�+4)]⋮�[(6y+15)(6y+4)]x

⇔11⋮�⇒�∈Ư(11)11xxƯ(11)⇒......      CHÚC BẠN HỌC TỐT

26 tháng 10 2023

\(5x^2+2xy+y^2-16x+16=0\)

=>\(x^2+2xy+y^2+4x^2-16x+16=0\)

=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)

=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)