K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Cách khác: Ta có \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x+1\right)^2=32x\).

Từ đó \(32x⋮\left(x+1\right)^2\).

Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).

+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)

+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)

+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).

Vậy...

NV
12 tháng 3 2021

\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)

\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)

\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)

Do \(x+1\ge2\) nên chỉ có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\) 

TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)

Bạn tự giải

12 tháng 12 2019

        \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x^2+2x+1\right)=32\left(x+1\right)-32\)

\(\Leftrightarrow y\left(x+1\right)^2=32\left(x+1\right)-32\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(32-xy-y\right)=32\)

Vì x, y nguyên dương nên:

...( tự làm nhé!)

1 tháng 4 2020

32 nha

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x

NV
5 tháng 2 2021

\(x^3-32x=-y\left(2x+1\right)\Rightarrow-y=\dfrac{x^3-32x}{2x+1}\)

\(\Leftrightarrow-8y=\dfrac{8x^3-256x}{2x+1}=4x^2-2x-127+\dfrac{127}{2x+1}\)

\(\Rightarrow2x+1=Ư\left(127\right)=\left\{-127;-1;1;127\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=-127\left(loại\right)\\2x+1=-1\left(loại\right)\\2x+1=1\left(loại\right)\\2x+1=127\end{matrix}\right.\) \(\Rightarrow x=63\Rightarrow y=-1953< 0\) (loại)

Pt đã cho không có nghiệm nguyên dương

\(A=\left(1+\frac{x^2}{y^2}\right)\left(1+\frac{y^2}{x^2}\right)\ge2\sqrt{\frac{x^2}{y^2}}.2\sqrt{\frac{y^2}{x^2}}=2.\frac{x}{y}.2.\frac{y}{x}=4\) ( Cosi ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

... 

9 tháng 7 2020

xin chào bạn khỏe không mình đang tập nói tiếng việt

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~