Tìm GTLN của biểu thức :
\(K=-3x^2-y+8x-2xy+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3x^2+y^2-8x+2xy+16\)
\(P=\left(x^2+2xy+y^2\right)+\left(2x^2-8x+8\right)+8\)
\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\)
Vậy GTNN của P=8 <=> \(\orbr{\begin{cases}x+y=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}y=-2\\x=2\end{cases}}\)
Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)
\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)
\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)
Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)
\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)
\(\Rightarrow-1\le x+y-4\le1\)
\(\Rightarrow3\le x+y\le5\)
Vậy Bmin=3 khi y=2;x=1
Bmax=5 khi y=2;x=3
a: \(A=-x^2-4x-2\)
\(=-x^2-4x-4+2\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x+2\right)^2+2< =2\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)
=>\(x=-\dfrac{3}{4}\)
c: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-x^2-2x-1+9\)
\(=-\left(x^2+2x+1\right)+9\)
\(=-\left(x+1\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
d: \(D=-8x^2+4xy-y^2+3\)
\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)
\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)
Dấu '=' xảy ra khi y=0 và x-1/4y=0
=>y=0 và x=0