K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

có ghi đề sai ko z bạn??

7 tháng 8 2017

không tớ ghi đúng đề

1 tháng 9 2016

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

1 tháng 9 2016

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

thay đổi thông tin đi