Phân tích thành nhân tử
\(x^3-x^2-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Lời giải:
$x^4-x^3-2x-4=(x^4+x^3)-(2x^3+2x^2)+(2x^2+2x)-(4x+4)$
$=x^3(x+1)-2x^2(x+1)+2x(x+1)-4(x+1)$
$=(x+1)(x^3-2x^2+2x-4)$
$=(x+1)[x^2(x-2)+2(x-2)]=(x+1)(x-2)(x^2+2)$
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\left(x^2-x+3\right)\left(x^2-x-2\right)+4\)
\(=\left(x^2-x\right)^2+\left(x^2-x\right)-6+4\)
\(=\left(x^2-x+2\right)\left(x^2-x-1\right)\)
lạy chúa, ông giỏi thế, tôi ngồi cả buổi mà ko ra:(((
Mình bổ sung nhé:
\(=\left(x+1\right)\left(x^4+x^3+x^2-x^3+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x^2+x+1\right)-\left(x^3-1\right)\right]\)
\(=\left(x+1\right)\left[x^2\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
=x^3(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3+1)
=(x^2+x+1)(x+1)(x^2-x+1)
(x+1).(x+2).(x+3).(x+4)-4
=(x+1)(x+4)(x+2)(x+3)-4
=(x2+5x+4)(x2+5x+6)-4
Đặt t=x2+5x+4 ta được:
t.(t+2)-4
=t2+2t-4
Vẫn sai đề
\(3\left(x+4\right)-x^2-4x\)
\(\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)\)
\(\Leftrightarrow\left(3-x\right)\left(x+4\right)\)
\(x^3-x^2-4\)
\(=\left(x^3-8\right)-\left(x^2-4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4-x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)