Rút gọn biểu thức :
\(A=1+4+4^2+...+4^{90}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
\(B=\dfrac{1-4\sin^2x\cdot\cos^2x}{\sin^2x+2\sin x\cdot\cos x+\cos^2}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x+4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}=\dfrac{1}{2\sin x\cdot\cos x}\)
\(A=\dfrac{-4}{9x^2-4}+\dfrac{2x+1}{3x-2}-\dfrac{1}{3x+2}\)
\(=\dfrac{-4+6x^2+4x+3x+2-3x+2}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{6x^2+4x}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{2x}{3x-2}\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(A=1+4+4^2+...+4^{90}\)
\(4A=4+4^2+4^3+...+4^{90}+4^{91}\)
\(4A-A=\left(4+4^2+4^3+...+4^{91}\right)-\left(1+4+4^2+...+4^{90}\right)\)
\(3A=4+4^2+4^3+...4^{91}-1-4-4^2-...-4^{90}\)
\(3A=4^{91}-1\)
\(A=\frac{4^{91}-1}{3}\)
t i c k nha ^^
4A= 4+42+43+....+491
4a-4=(4+42+43+...+491)-(1+4+42+...+490)
3a=491-1
a=(491-1)/3