cho a,b,c \(\ge0\) thỏa mãn a+b+c=1. chứng minh rằng :
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le6\)
xin nhờ các bn giúp đỡ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)
Tương tự: \(\dfrac{b}{\sqrt{b^2+a+c}}\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\) ; \(\dfrac{c}{\sqrt{c^2+b+a}}\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)
Cộng vế:
\(P\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)
Lại có:
\(a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}\)
\(=\sqrt{a}.\sqrt{a+ab+ac}+\sqrt{b}.\sqrt{b+bc+ab}+\sqrt{c}.\sqrt{c+ac+bc}\)
\(\le\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+2bc+2ca\right)}\)
\(\Rightarrow P\le\dfrac{\sqrt{\left(a+b+c\right)\left(a+b+c+2ab+bc+ca\right)}}{a+b+c}=\sqrt{\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a+b+c+2ab+2bc+2ca}{a+b+c}\le3\Leftrightarrow a+b+c\ge ab+bc+ca\)
Thật vậy:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow a+b+c\ge ab+bc+ca\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)
\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)
\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)
\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(VT=\sqrt{\left(a+\dfrac{5b}{2}\right)^2+\dfrac{15b^2}{4}}+\sqrt{\left(b+\dfrac{5c}{2}\right)^2+\dfrac{15c^2}{4}}+\sqrt{\left(c+\dfrac{5a}{2}\right)^2+\dfrac{15a^2}{4}}\)
\(\Rightarrow VT\ge\sqrt{\left(a+\dfrac{5b}{2}+b+\dfrac{5c}{2}+c+\dfrac{5a}{2}\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\sqrt{\dfrac{49}{4}\left(a+b+c\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}=4\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
a.
Bình phương 2 vế, BĐT cần chứng minh trở thành:
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)
Ta có:
\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cộng lại:
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
b.
\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)
Nên ta chỉ cần chứng minh:
\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)
\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)
Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Vì A,b,c.0 va a+b+c=0
Suy ra th1a=1; b=0;c=0
th2 a=0;b=1;c=0
th3 a=0;b=0;c=0
Dawt
<=> (a+b)^2+(b+c)+(c+a)^2<=36
<=>a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2<=36
<=>2(a^2+b^2+c^2)+2(ab+bc+ac)<=36
<=>2(a(a+b)+(b(b+c)+c(c+a)<=36
Thay số Vào ta thấy Cả 3 trường hợp đều tm
Mk nghĩ ko có cho bài giải naytương lại đâu
6 hay \(\sqrt{6}\)vậy bạn? Khi thay \(a=b=c=\frac{1}{3}\)thì nó ra \(\sqrt{6}\)cơ