Tìm số nguyên x,y thoả mãn: 3x^2 + 4y^2 +12x +3y +5=0 Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $3x+5y=a; x+4y=b$.
Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$
$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$
Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$
$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$
$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.
\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)
Coi pt trên là pt bậc 2 ẩn x
Ta có : \(\Delta'=36-12y^2-9y-15\)
\(=-12y^2-9y+21\)
Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)
\(\Leftrightarrow-\frac{7}{4}\le y\le1\)
Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)
Rồi làm nốt
\(x^2+2y^2-2xy+4y+3< 0\)
\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)
Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)
\(\Rightarrow x=y=-2\)
Vậy: ....
Lời giải:
$y^2+2xy-3x-2=0$
$\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$
Dễ thấy với mọi $x\in\mathbb{Z}$ thì $(x+1, x+2)=1$ nên để tích của chúng là scp thì $x+1, x+2$ cũng là scp
Đặt $x+1=a^2; x+2=b^2$ với $a,b\in\mathbb{Z}$
$\Rightarrow 1=b^2-a^2=(b-a)(b+a)$
$\Rightarrow b-a=b+a=1$ hoặc $b-a=b+a=-1$
$\Rightarrow a=0\Rightarrow x=-1$
Khi đó:
$(x+y)^2=(x+1)(x+2)=0$
$\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$
Không mấy tính tổng quát, giải sử x=<y=<z
=> 1/x+1/x+1/x >=1/x +1/y +1/z = 3/5
=> 3/x>=3/5
=> X=<5
Có 1/x< 3/5; do 1/x +1/y +1/z = 3/5
=> X>5/3 => x=2,3,4,5
Xét các trường hợp ta thấy chỉ có x=y=z=5 thỏa
x^3-3x^2+5x+2007=0
nên \(x\simeq-11,57\)
y^3-3y^2+5y-2013=0
nên \(y\simeq13,57\)
=>x+y=2
\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)
\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)
Ta có:
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)
\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\)
\(\Rightarrow y=1\)
Thế vào pt ban đầu: \(25^x-5^x=20\)
Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow5^x=5\Rightarrow x=1\)
Lời giải:
$3x^2+4y^2+12x+3y+5=0$
$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$
$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$
$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$
$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$
$\Rightarrow -2< x+2< 2$
$\Rightarrow -4< x< 0$
$\Rightarrow x\in \left\{-3; -2; -1\right\}$
Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.