K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

theo giả thiết ta có:BM=MA;BN=NC\(\Rightarrow\) MN là dg trung bình của tam giác ABC

                                                    \(\rightarrow\) MN song song vs BC\(\rightarrow\) góc BMN=BAC(đồng vị)

b/vì BM=MA ;BN=NC SUY RA:BM=MA=12:2=6 cm và BN=NC=BC:2=13:2=6.5 cm

áp dụng định lý pi-ta-go cho tam giác BNM vuông tại m:MN2=BN2+BM2

                                                                                                      thay số:MN2=62+6.52

                                                                                                    MN2=78.25 cm\(\Rightarrow\)MN=\(\sqrt{78.25}\)

3 tháng 10 2021

a) Xét tam giác ABC có:

M là trung điểm AB(gt)

N là trung điểm BC(gt)

=> MN là đường trung bình

=> MN//AC

Mà AC⊥AB(tam giác ABC vuông tại A)

=> MN⊥AB(từ vuông góc đến song song)

b) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(pytago\right)\)

\(\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\Rightarrow AC=5\left(cm\right)\)

Ta có: MN là đường trung bình tam giác ABC

\(\Rightarrow MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=2,5\left(cm\right)\)

 

9 tháng 9 2021

\(a,\) \(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow\) MN là đường trung bình tam giác ABC 

\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)

\(b,MN=\dfrac{1}{2}AC\left(tính.chất.đtb\right)\)

Mà \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-12^2}=5\left(cm\right)\left(pytago\right)\)

\(\Rightarrow MN=\dfrac{5}{2}\left(cm\right)\)

\(c,\left\{{}\begin{matrix}AM=MB\\AP=PC\end{matrix}\right.\Rightarrow\) MP là đường trung bình tam giác ABC

\(\Rightarrow MP=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)

\(\left\{{}\begin{matrix}AP=PC\\BN=NC\end{matrix}\right.\Rightarrow\) NP là đường trung bình tam giác ABC

\(\Rightarrow NP=\dfrac{1}{2}AB=6\left(cm\right)\)

a: Xét ΔBAC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

hay MN\(\perp\)AB

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=5(cm)

\(\Leftrightarrow MN=2.5\left(cm\right)\)

23 tháng 9 2021

a) Xét tam giác ABC có:

M là trung điểm AB(gt)

N là trung điểm BC(gt)

=> MN là đường trung bình của tam giác ABC

=> MN//AC

Mà AB⊥AC

=> MN⊥AB

b) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)

Xét tam giác ABC có

MN là đường trung bình 

=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)

1 tháng 10 2021

:)

8 tháng 4 2020

a) vì M là tđ AB -> AM=1/2AB=5cm
        N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H 
có góc AMH + góc BMK ( đối đỉnh )
     AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)

d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)

tam giác ABC có góc A vuông 

ta có : BC2  = AB+AC2 ( định lý pytago )

thay BC2 = 102 + 242 

=> BC=26 cm

ta lại có : M là trung điểm của AB  => AM=1/2AB=1/2 . 10 =5 cm

tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm 

tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )

                                              thay MN2 = 52 + 122 

                                             => MN = 13 cm 

Vậy MN = 13 cm 

30 tháng 12 2021

a:BC=20cm

MN=10cm

Bài 1: 

Xét ΔBMC có 

N là trung điểm của BM

I là trung điểm của BC

Do đó: NI là đường trung bình của ΔBMC

Suy ra: NI//MK

Xét ΔANI có 

M là trung điểm của AN

MK//NI

Do đó: K là trung điểm của AI

5 tháng 10 2021

em cảm ơn ạ

11 tháng 11 2019

a)ta có MA=MB

NA=NC

=)MN là đường trung bình tam giác ABC

=)MN//BC

b)ta có MN là đường trung bình tam giác ABC (cmt)

=)MN=1/2BC

lại có BC = 10cm (gt)

=)MN=BC/2=5 cm

11 tháng 11 2019

B A C M N

a) Xét tam giác ABC có : 

M là trung điểm của AB

N là trung điểm của AC

=> MN là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // BC ( tính chất )

b) Vì MN là trung bình của tam giác ABC ( chứng minh trên )

\(\Rightarrow MN=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\) ( tính chất ) 

17 tháng 9 2019

a) Ta có: M là trung điểm AB

           N là trung điểm BC

=> MN là đường trung bình của \(\Delta ABC\)

=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)

b) Áp dụng định lý Pytago ,ta có :

AB2 + AC2 = BC2

 AC2 = 132 - 122

=> AC = 5 cm

Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)

=> MN = \(\frac{1}{2}5\)= 2.5 cm