K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

a)\(-3x\left(y^2+2x\right)-3\left(1-xy^2\right)+6x^2\)

\(=-3xy^2-6x^2-3+3xy^2+6x^2\)

\(=-3\left(đpcm\right)\)

b)\(\left(2x+1\right)\left(3y-1\right)-\left(y-1\right)\left(6x+3\right)-2\left(2x+5\right)\)

\(=6xy-2x+3y-1-\left(6xy+3y-6x-3\right)-4x-10\)

\(=6xy-6x+3y-11-6xy-3y+6x+3\)

\(=-8\left(đpcm\right)\)

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

5 tháng 10 2021

a) Sửa đề: \(A=\left(3x-2\right)\left(9x^2+6x+4\right)-3x\left(9x^2-2\right)\)

\(=27x^3-8-27x^3+6=-2\)

b: Ta có: \(B=\left(3x+5\right)^2+\left(6x+10\right)\left(2-3x\right)+\left(2-3x\right)^2\)

\(=\left(3x+5+2-3x\right)^2\)

=49

19 tháng 7 2017

Như thế này bn thấy rõ k

Những hằng đẳng thức đáng nhớ

20 tháng 7 2017

Trai Vô Đối cái phần 2 dòng 2 đoạn cuối là j vậy

15 tháng 8 2020

a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)

\(=x^2+10x+25-x^2+10x-25-20x+2\)

\(=2\) không phụ thuộc vào \(x\)

b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)

\(=x^2-2x-15-x^2+2x-1\)

\(=-16\) không phụ thuộc vào \(x\)

c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)

\(=3x^2-4x-4-3x^2+5x+8\)

\(=x+8\) câu này đề sai.

d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)

\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)

\(=12x^2+34x+10-12x^2-24x-10x+10\)

\(=20\) không phụ thuộc vào \(x\)

15 tháng 8 2020

a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2 

= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2

= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2

= 2 ( đpcm )

b) ( x + 3 )( x - 5 ) - ( x - 1 )2

= x2 - 2x - 15 - ( x2 - 2x + 1 )

= x2 - 2x - 15 - x2 + 2x - 1

= -16 ( đpcm )

c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8

= 3x2 - 4x - 4 - 3x2 + 5x + 8

= x + 4 ( lỗi đề )

d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )

= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10

= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10

= 20 ( đpcm )

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)