cho tam giác ABC vuông tại A có đường cao AH biết AH=4 cm,HB=2 cm,HC=8 cm
a,tính độ dài hai cạch AB,AC
b,cm góc b nhỏ hơn góc c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm
Bài 2:
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot EB=HE^2\)
b: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: FE=AH và \(\widehat{FHE}=90^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot FC=FH^2\)
Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:
\(HF^2+HE^2=FE^2\)
\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)
1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)
BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)
\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)
2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.
b)Chứng minh tương tự câu a), ta được:
AF.FC=HF^2
Lại có:
Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.
Suy ra, HF = AE
Suy ra, AF.FC=AE^2
Mà AE.EB=HE^2
Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)
3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:
\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)
+) +) Xét Δ ABH vuông tại H
\(\Rightarrow AB^2=AH^2+BH^2\) ( định lí Py-ta-go )
\(\Rightarrow AB^2=4^2+2^2\)
\(\Rightarrow AB^2=16+4=20\)
\(\Rightarrow AB=\sqrt{20}\) ( do AB > 0 )
+) Xét Δ AHC vuông tại H
\(\Rightarrow AC^2=AH^2+HC^2\) ( định lí Py-ta-go)
\(\Rightarrow AC^2=4^2+8^2\)
\(\Rightarrow AC^2=16+64=80\)
\(\Rightarrow AC=\sqrt{80}\) ( do AC > 0 )
+) Ta có \(AH\perp BC\) tại H
\(\Rightarrow H\in BC\)
\(\Rightarrow\) HB + HC = BC
=> BC = 2 + 8 = 10 ( cm)
Vậy ...
@@ Học tốt
Đề bài nó cho số k đẹp hay là t tính sai nhỉ ?
Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)
nhầm chỗ HTL nhé
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)
b) ΔAHB vuông tại H
Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2
⇒ 42 + 22 = AB2
⇒AB2 = 20
⇒AB = √20
ΔAHC vuông tại H
Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2
⇒42 +82 = AC2
⇒ AC2 = 80
⇒AC = √80
b)Vì AB>AC(√20>√80)
⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)
Bạn tự vẽ hình nhé