K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

Giải:

Phòng họp đó có số ghế là:

              10 nhân 5 = 50 (cái ghế)

Vậy phòng họp đó đủ chỗ cho 50 người ngồi hợp (mỗi người 1 cái ghế)

k cho mik nha

13 tháng 5 2021

10x5=50(ghế)

Vậy phòng họp đó đủ để chứa 50 người

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

10 tháng 6 2017

Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x  và  x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
 308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại)  vì 250 không chia hết cho 30@x_2=25 (nhận))┤ 
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

10 tháng 6 2017

Cách 1:

Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0) 
Ta có tổng cộng 250 người nên x.y =250 (1) 
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2) 
Từ (1) và (2) ta có hệ:

 

Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

2 tháng 6 2021

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2021

12 hàng

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có 240xghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> (240x+1)(x+3)=315⇔240+720x+x+3=315

⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0

Δ′=(−36)2−720=576

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

13 tháng 12 2017

Câu hỏi tương tự nha bạn

15 tháng 2 2018

Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]

=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2

Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)

Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)

=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a

=> 35a-70+2a\(^2\)-4a=35a

=> 2a\(^2\)-4a-70=0

=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp

Trường hợp 1 : a-1 = -6 => a = - 5 [loại]

Trường hợp 2 : a - 1 = 6 => a = 7

Còn đây bạn làm nốt tiếp

Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người

23 tháng 10 2018

Cách giải bài toán bằng cách lập phương trình cực hay: Bài toán so sánh, thêm bớt | Toán lớp 8

Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.

1day là 8 người
26 tháng 1 2022

đề thiếu

Đề bài yêu cầu gì?