Cho 10 số tự nhiên khác nhau và khác 0 có tổng bằng 280. Gọi d là ƯCLN của 10 số đó. Hỏi
d có thể nhận giá trị lớn nhất là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Câu này có trong câu hỏi tương tự bạn chịu khó tìm bạn nhé :))
1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006
Ta thấy 2006!+2 chia hết cho 2
2006!+3 chia hết cho 3
2006!+4 chia hết cho 4
.....................................
2006!+2006 chia hết cho 2006
Vậy cả 2005 số trên đều là hợp số
-> điều phải chứng minh
Trong 1 tích 1 trong các thừa số là số chẵn thì tích là 1 số chẵn
Theo đề bài trường hợp tích của 5 số bất kỳ là 1 số lẻ thì ít nhất trong 12 số phải có 5 số lẻ, vậy để tích 5 số bất kỳ luôn là 1 số chẵn thì số các số lẻ nhiều nhất là 4 số
Tổng nhỏ nhất của 5 số ngày là tổng của dãy
1+2+3+4+5+6+7+8+10+12+14+16=88
Tổng đó là
Gọi 10 số tự nhiên đó là: \(a_1;a_2;a_3;a_4;...;a_{10}\) có d là ƯCLN
\(\Rightarrow\left\{{}\begin{matrix}a_1=dk_1\\a_2=dk_2\\...\\a_{10}=dk_{10}\end{matrix}\right.\left(k_1;k_2;k_3;...;k_{10}\in N|k_1\ge1;k_2\ge1;...\right)\)
Ta có: \(a_1+a_2+a_3+...+a_{10}=280\) (đề bài)
\(\Rightarrow dk_1+dk_2+dk_3+...+dk_{10}=280\)
\(\Rightarrow d\left(k_1+k_2+k_3+...+k_{10}\right)=280\)
Đặt: \(k_1+k_2+k_3+...+k_{10}=n\left(n\in N\right)\)
\(\Rightarrow d.n=280\) vậy để d là số lớn nhất thì n phải nhỏ nhất
Do: \(\left\{{}\begin{matrix}k_1\ge1\\k_2\ge1\\...\\k_{10}\ge1\end{matrix}\right.\Rightarrow n=k_1+k_2+k_3+...+k_{10}\ge1+1+...+1=10\)
Số n nhỏ nhất là 10 khi đó số d lớn nhất là:
\(d_{max}=\dfrac{280}{10}=28\)
Vậy: ...