K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

2 tháng 7 2023

Náy mình bị lỗi bạn bỏ cái này đi nhé. CHỉ giữ 1 cái thôi máy mình nó ra tần 4 cái

2 tháng 7 2023

`a^3+b^3-6ab=-11<=>(a+b)^3-3ab(a+b)-6ab=-11<=>(a+b)^3-3ab(a+b+2)=-11`

Đặt `{(S=a+b),(P=ab):}`

Khi đó ta có `S^3-3P(S+2)=-11<=>(4(S^3+11))/(3(S+2))=4P`

Lại có `S^2>=4P` nên `S^2>=(4(S^3+11))/(3(S+2))`

`<=>(S^3-6S^2+44)/(3(S+2))<=0(S\ne-2)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`

- TH2: `{(S^3-6S^2+44>=0),(3(S+2)<0):}<=>{(S>=-2,30213805),(S< -2):}<=>-2,30213805<S<-2`

mà `-7/3=-2,33333...<-2,30213805` nên `-7/3<S<-2(đfcm)`

 

 

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

17 tháng 1 2021

BĐT \(\Leftrightarrow a^3-b^3+a^2b-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)^2\ge0\) (luôn đúng do \(a\geq b\)).

 

NV
17 tháng 8 2021

\(a^2+b^2=a^3+b^3=a^4+b^4\)

\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)

\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)

\(\Rightarrow2ab=a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^2+b^2=a^3+b^3\)

\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)

\(\Rightarrow a+b=2\)

a+b+c=1; a>0; b>0; c>0

=>a>=b>=c>=0

=>a(a-c)>=b(b-c)>=0

=>a(a-b)(a-c)>=b(a-b)(b-c)

=>a(a-b)(a-c)+b(b-a)(b-c)>=0

mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0 

nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0

=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a

=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)

=>a^3+b^3+c^3+6abc>=(ab+bc+ac)

mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|Câu 9.a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8Câu 10. Chứng minh các bất đẳng thức:a)...
Đọc tiếp

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

1
31 tháng 10 2021

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

4 tháng 11 2021

Câu 5:

\(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)

\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

4 tháng 11 2021

Câu 7:

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)