K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

A B C M D E

Nối A vs M

a) ta có: M đối xưng vs D qua AB=> AB là đg trung trực của DM =>AD=AM(ĐL)   (1)

Do M đx vs E qua AC nên AC là đg trung trực của ME=>AE=AM  (2)

từ (1),(2) => AD=AE

b)ta có : DAB = BAM (vì AB là đg tt của DM)  =>DAB+BAM=2. BAM   (3)

 mặt khác: EAC=CAM(vì AC là đg tt của EM)=>EAC+CAM=2.CAM     (4)

từ (3),(4)=>DAB+BAM+MAC+CAE=2(BAM+CAM)=2.90=180 (vì BAM+CAM=BAC=90)

=>3 điểm D,A,E thẳng hàng

a: Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

=>AM=AD

Xét ΔAMD có AM=AD
nên ΔAMD cân tại A

mà AB là đường cao

nên AB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE

mà AC là đường cao

nên AC là tia phân giác của góc MAE(2)

Ta có: AM=AD

AM=AE

Do đó: AD=AE

b: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

nên E,A,D thẳng hàng

25 tháng 7 2016

Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .

Áp suất

Áp suất

26 tháng 7 2016

lỗi j thế bà

17 tháng 7 2021

undefinedundefined

13 tháng 11 2021

a: Ta có: D đối xứng với M qua AB

nên AD=AM(1)

Ta có: E đối xứng với M qua AC

nên AM=AE(2)

Từ (1) và (2) suy ra AD=AE

a: ta có: M và D đối xứng nhau qua BA

nên AB là đường trung trực của MD

=>AM=AD

=>ΔAMD cân tại A

mà AB là đường cao

nênAB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE

=>ΔAME cân tại A

mà AC là đường cao

nên AC là phân giác của góc MAE(2)

Ta có: AD=AM

AE=AM

Do đó: AE=AD

b: Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAM}+\widehat{DAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

hay E,A,D thẳng hàng

10 tháng 12 2017

Bài tập: Đối xứng trục | Lý thuyết và Bài tập Toán 8 có đáp án

Theo giả thiết ta có:

+ D đối xứng với M qua AB.

+ E đối xứng với M qua AC.

+ A đối xứng với A qua AB, AC.

⇒ AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.

Áp dụng tính chất đối xứng ta có:

Bài tập: Đối xứng trục | Lý thuyết và Bài tập Toán 8 có đáp án 

⇒ AD = AE ⇒ (đpcm).

29 tháng 7 2017

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Theo giả thiết ta có:

+ D đối xứng với M qua AB.

+ E đối xứng với M qua AC.

+ A đối xứng với A qua AB, AC.

AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.

⇒ Áp dụng tính chất đối xứng ta có:Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ (đpcm).