K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

viết phân số kiểu gì zậy?

4 tháng 8 2017

Câu 1 :

=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}.\)

=\(\frac{1}{3}-\frac{1}{7}=\frac{4}{21}.\)

Câu 2 :

=\(\frac{23.23+6}{23.\left(23+1\right)-17}\)

=\(\frac{23.23+6}{23.23+23-17}\)

=\(\frac{23.23+6}{23.23+6}\)

=1.

3 tháng 4 2016

a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111

A = 1/3 - 1/111

A = ..............Bạn tự tính nhé!

b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)

B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)

B = 2.(1/15 - 1/90)

B = 2.5/90

B =......Tự tính nhé!

C ; D làm tương tự nhé!

3 tháng 4 2016

yêu cầu là gì vậy

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

30 tháng 7 2020

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\\ \)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{4}{8}-\frac{1}{8}\\ =\frac{3}{8}\)

Chúc bn học thiệt giỏi nhé!

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\left(\frac{7}{7}-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

Chúc bạn học tốt !!! 

1 tháng 9 2015

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

=>\(S=\frac{4}{9}-\frac{1}{5}\)

=>\(S=\frac{11}{45}\)

1 tháng 9 2015

lê chí cường dung 

17 tháng 2 2017

13/30 nhé bạn

17 tháng 2 2017

Kêt quả bằng 13/30

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$

$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$

$x(1-\frac{1}{7})< \frac{13}{7}$

$x.\frac{6}{7}< \frac{13}{7}$

$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$

Vì $x$ là số nguyên nên $x\leq 2$

Vậy $x$ là các số nguyên sao cho $x\leq 2$.

26 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)

Cái còn lại tự CM