K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.

Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).

29 tháng 3 2020

viết bằng công thức ở chỗ \(\sum\) đi bạn

29 tháng 3 2020

Bạn bảo cái gì cơ

23 tháng 9 2017

\(Q=2x^2-6x\)

\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)

\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .

\(M=x^2+y^2-x+6y+10\)

\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)

20 tháng 9 2021

tiểu học mà bảo toán lớp 8

2 tháng 10 2021

bạn đã suy nghĩ chưa

20 tháng 11 2021

\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)

\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)

\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)

20 tháng 11 2021

cảm ơn !

25 tháng 10 2016

ko biert lam kho qua

7 tháng 9 2018

\(a.2^6.\left(x-2\right)=104\)

\(x-2=104:2^6\)

\(x-2=1,652\)

\(x=1,625+2\)

\(x=3,625\)

\(b.2\times4^{x+1}=128\)

\(4^{x+1}=128:2\)

\(4^{x+1}=64\)

\(4^{x+1}=4^3\)

\(\Rightarrow x+1=3\)

\(x=3-1\)

\(\Leftrightarrow x=3\)

\(c.227-5\left(x+8\right)=3^6:3^3\)

\(227-5\left(x+8\right)=3^3\)

\(227-5\left(x+8\right)=27\)

\(5\left(x+8\right)=227-27\)

\(5\left(x+8\right)=200\)

\(x+8=200:5\)

\(x+8=40\)

\(x=40-8\)

\(x=32\)

ủng hộ mk nha, chắc đúng đó

cả tháng nay ms online lại

7 tháng 9 2018

thx bn

NM
19 tháng 9 2021

ta có :

\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1+x-1\right)\left(2x+1-x+1\right)=3x\left(x+2\right)\)