cho hai dtr (O) va (O') tx tai A, dt OO' cat hai dtr lan luot tai B va C, DE latiep tuyen chung ngoai cua dtr, m la giao diem Cua BD va CE. CM;
a/ Goc DME vuong
b/ MA la tiep tuyen chung cua (O) va (O')
c/ MD.MB= ME.MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
mà OA là đường cao
nên OA là đường phân giác
Xét ΔBOA và ΔCOA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔBOA=ΔCOA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBDC nội tiếp
DC là đường kính
Do đó;ΔBDC vuông tại B
=>BC\(\perp\)BD
mà BC\(\perp\)OA
nên OA//BD
Bạn tự vẽ hình nha.
a) Qua A kẻ tiếp tuyến chung trong của (O) và (O') cắt d tại N.
Theo tính chất 2 tiếp tuyến cắt nhau ta có: NA = NB và NA = NC . Do đó NB = NC => NA là trung tuyến của tam giác ABC và \(NA=\frac{1}{2}BC\). Từ đó => tam giác ABC vuông tại A.
b) Theo phần a ta đã chứng minh được N là trung điểm BC thì AN là tiếp tuyến chung của 2 đường tròn => M trùng với N. Vậy AM là tiếp tuyến chung của 2 đường tròn.