K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2023

Gọi (d'): y = ax + b

Do (d') // (d) nên a = -1/2

⇒ (d'): y = -x/2 + b

Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:

-3/2 + b = 0

⇔ b = 3/2

Vậy (d'): y = -x/2 + 3/2

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$

Đường thẳng $OM$ có dạng: $y=ax$

$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$

$\Rightarrow a=\frac{3}{2}$

Vậy ĐT $OM$ là: $y=\frac{3}{2}x$

b) Gọi PTĐT $CE$ có dạng $y=ax+b$

PT hoành độ giao điểm giữa $(P)$ và $CE$ là:

$\frac{-x^2}{2}-ax-b=0$

$\Leftrightarrow x^2+2ax+2b=0(*)$

$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm

\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)

Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$

2 tháng 4 2021

Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v

a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)

\(y'=x^2-2x+2\)

\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)

b/ \(y'=x^2-2x+2\)

Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)

Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)

\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)

P/s: Check lại số hộ mình ạ!

 

16 tháng 11 2021

c: Vì (d)//(d') nên a=1

Vậy: (d'): y=x+b

Thay x=2 và y=3 vào (d'), ta được:

b+2=3

hay b=1

11 tháng 5 2022

Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)

Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)

\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\)  \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) 

Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)

Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)

 

y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2

(d1)//(d)

=>(d1): y=1/2x+b

=>y'=1/2

=>(x+1)^2=4

=>x=1 hoặc x=-3

Khi x=1 thì f(1)=0

y-f(1)=f'(1)(x-1)

=>y-0=1/2(x-1)=1/2x-1/2

Khi x=-3 thì f(-3)=(-4)/(-2)=2

y-f(-3)=f'(-3)(x+3)

=>y-2=1/2(x+3)

=>y=1/2x+3/2+2=1/2x+7/2