1/1*3 + 1/3*5 + 1/5*7 + ... + 1/2013*2015 =1/2 - 1/x
các số trên đều là phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}\right)-x:\frac{3}{2}=\frac{7}{3}\\
\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}\right):\frac{3}{2}-x:\frac{3}{2}=\frac{7}{3}\\\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x\right]:\frac{3}{2}=\frac{7}{3}\\
\left(1-\frac{1}{99}\right)-x=\frac{7}{3}\times\frac{3}{2}\\
\frac{98}{99}-x=\frac{7}{2}\\
x=\frac{98}{99}-\frac{7}{2}=\frac{-497}{198}\)
2.\(\frac{x}{y}=\frac{4}{3}\Rightarrow\hept{\begin{cases}x=4a\\y=3a\\x-y=4a-3a=a\end{cases}}\\ \left(x-y\right)^{2015}=5^{2015}\Rightarrow x-y=5\\ \Rightarrow a=5\Rightarrow\hept{\begin{cases}x=4\times5=20\\y=3\times5=15\end{cases}}\)
a: Số số hạng là 2014-1+1=2014 số
A=2014*2015/2=2029105
b: Số số hạng là (2013-1):2+1=1007(số)
B=(2013+1)*1007/2=1014049
c: Số số hạng là (2014-2):2+1=1007(số)
Tổng là (2014+2)*1007/2=1015056
d: Số số hạng là (2014-1):3+1=672(số)
Tổng là (2014+1)*672/2=677040
e: Số số hạng là (2015-5):5+1=403(số)
Tổng là (2015+5)*403/2=407030
1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)
2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)
3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)
4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)
5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)
6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)
=>\(x\in\left\{0;2;8\right\}\)
7: Để 8/x+1 là số tự nhiên thì
\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)
=>x+1 thuộc {1;2;4;8}
=>x thuộc {0;1;3;7}
8: Để 7/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(7)
=>x+1 thuộc {1;7}
=>x thuộc {0;6}
9: Để 6/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(6)
=>x+1 thuộc {1;2;3;6}
=>x thuộc {0;1;2;5}
10: Để 5/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(5)
=>x+1 thuộc {1;5}
=>x thuộc {0;4}
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2013.2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2015}\right)=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\cdot\frac{2014}{2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1007}{2015}=\frac{1}{2}-\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}-\frac{1007}{2015}\Leftrightarrow\frac{1}{x}=\frac{1}{4030}\)
\(\Rightarrow x=4030\)