Cho (O) lấy điểm A. Vẽ các dây AB và AC sao cho góc BAC=60 và O nằm trong góc BAC. Tính số đo cung BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
a: Xét ΔAHE có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔAHE cân tại A
Suy ra: AE=AH(1)
Xét ΔAHF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHF cân tại A
Suy ra: AF=AH(2)
Từ (1) và (2) suy ra AF=AE
a, Vì AI là đg cao và trung tuyến tg AHE nên tg AHE cân tại A \(\Rightarrow AE=AH\)
Vì AK là đg cao và trung tuyến tg AHF nên tg AHF cân tại A \(\Rightarrow AF=AH\)
Vậy \(AE=AF\)
b, Vì AI, AK là đg cao của 2 tg cân nên chúng cũng là phân giác của 2 tg đó
\(\Rightarrow\widehat{EAF}=\widehat{EAH}+\widehat{HAF}=2\left(\widehat{KAH}+\widehat{IAH}\right)=2\cdot\widehat{BAC}=120^0\)
Vì \(AE=AF\) nên tg AEF cân tại A
Vậy \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{EAF}}{2}=30^0\)
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}\)
=>\(sđ\stackrel\frown{CB}=2\cdot60^0=120^0\)