1x2+2x3+3x4+.......+20x21 . tính giá trị của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S= 1x2+2x3+3x4+4x5+...+ 20x21
3xS=3x( 1x2+2x3+3x4+4x5+...+ 20x21 )
3xS = 1x2x3+2x3x3+3x4x3+....+20x21x3
3xS = 1x2x3 + 2x3x(4-1) + 3x4x(5-2)+........+20x21x(22-19)
3xS= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +......+20x21x22 - 19x20x21
3xS = 20x21x22
S = 20x21x22 /3
S= 1x2+2x3+3x4+4x5+...+ 20x21
3xS=3x( 1x2+2x3+3x4+4x5+...+ 20x21 )
3xS = 1x2x3+2x3x3+3x4x3+....+20x21x3
3xS = 1x2x3 + 2x3x(4-1) + 3x4x(5-2)+........+20x21x(22-19)
3xS= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +......+20x21x22 - 19x20x21
3xS = 20x21x22
S = 20x21x22 /3
k mk nha

ta có\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}\)
\(=\frac{8056}{2015}\)
VẬY A=\(\frac{8056}{2015}\)


Ta có:\(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}=\frac{891}{100}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\ldots+\frac{1}{19\times20}+\frac{1}{20\times21}\)
\(=\frac11-\frac12+\frac12-\frac13+\frac14-\frac14+\ldots+\frac{1}{20}-\frac{1}{21}\)
\(=1-\frac{1}{21}\)
Vậy kết quả của phép tính trên là \(=\frac{20}{21}\)

A = \(\frac{1}{1\times2}\) + \(\frac{1}{2\times3}\) + \(\frac{1}{3\times4}\) + ... + \(\frac{1}{19\times20}\) + \(\frac{1}{20\times21}\)
A = \(\frac11\) - \(\frac12\) + \(\frac12\) - \(\frac13\) + \(\frac13\) - \(\frac14\) + ... + \(\frac{1}{19}\) - \(\frac{1}{20}\) + \(\frac{1}{20}\) - \(\frac{1}{21}\)
A = \(\frac11\) - \(\frac{1}{21}\)
A = \(\frac{20}{21}\)
Ta có: \(\frac{1}{1\times2}+\frac{1}{2\times3}+\cdots+\frac{1}{20\times21}\)
\(=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{20}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)

\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)
\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)
\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2019\left(1-\frac{1}{2019}\right)\)
\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)
Đặt A = 1×2 + 2×3 + 3×4 + ... + 20×21
3A = 1×2×3 + 2×3×(4-1) + 3×4×(5-2) + ... + 20×21×(22-19)
= 1×2×3 - 1×2×3 + 2×3×4 - 2×3×4 + 3×4×5 - ... - 19×20×21 + 20×21×22
= 20×21×22
A = 20×21×22 : 3
= 20×22×7
= 3080