K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

\(ab-ac+bc=c^2-1\)

\(ab-ac+bc-c^2=-1\)

\(a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\)

=> a + c = 1 thì b - c = - 1; a + c = - 1 thì b - c = 1 => a + c và b - c đối nhau

\(\Rightarrow a+c=-\left(b-c\right)\)

\(a+c=-b+c\)

\(\Rightarrow a=-b\)

\(\Rightarrow B=\frac{a}{b}=-1\)

4 tháng 7 2015

\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)

Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)

Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)

\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)

\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)

\(\Rightarrow A^2\ge1+2=3\)

\(\Rightarrow A\ge\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)

22 tháng 11 2017

giup minh voi cac ban

18 tháng 9 2019

Thêm đk \(a,b,c\ne0\)

Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)

\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)

\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)

\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

6 tháng 7 2019

Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo link trên!

17 tháng 8 2018

Ta có : \(a+b=x\Rightarrow a^2+2ab+b^2=x^2\Rightarrow a^2+b^2=x^2-2y\)

\(\Rightarrow a^2+b^2-2ab=x^2-2y-2y=x^2-4y\Rightarrow\left(a-b\right)^2=x^2-4y\Rightarrow a-b=\sqrt{x^2-4y}\)

1 . \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=\sqrt{x^2-4y}\left(x^2-2y+y\right)=\sqrt{x^2-4y}\left(x^2-y\right)\)

2 . \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=x\sqrt{x^2-4y}\left(x^2-2y\right)\)

17 tháng 8 2018

a+b=x hay a-b=x vậy bạn