K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

tìm lag mắt mới ra Xem câu hỏi

19 tháng 7 2016

a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\)

Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)

Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)

Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)

31 tháng 12 2017

với ab+bc+ca=1 

=>\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

tương tự mấy cái kia rồi thay vào, ta có

A=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b),ta có \(a^2+2bc-1=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)

tương tự mấy cái kia, rồi thay váo, ta có 

\(B=\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=1\)

^_^

31 tháng 12 2017

Ta có:   MS = (1+a2).(1+b2).(1+c2)

= (ab + ac + bc + a2).(ab + ac + bc + b2).(ab + bc + ac + c2)

= [ (a2 + ac) + (ab + bc) ] . [ (ab + b2) + (ac + bc) ] . [ (ab + bc) + (ac + c2) ]

= [ a(a + c) + b(a + c) ] . [ b(a + b) + c(a + b) ] . [ b(a + c) + c(a + c) ]

= (a + b)(a + c)(b + c)(a + b)(b + c)(a + c)

= (a + b)2(b + c)2(a + c)2     =  TS

Vậy   A = 1

8 tháng 3 2019

\(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\ge\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}\)

\(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\ge\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}\)

\(\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+b^2}\ge\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\)

\(\Rightarrow VT\le\frac{a^2+c^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{a^2+b^2}{a^2+b^2}=1+1+1=3\)

NV
8 tháng 3 2019

Áp dụng BĐT Cauchy-Schwarz: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Ta có \(\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}=\frac{\left(a+b\right)^2}{a^2+c^2+b^2+c^2}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)

Tương tự ta có:

\(\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\) ; \(\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\le\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+b^2}\)

Cộng vế với vế:

\(\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}+\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}+\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\le\frac{a^2+c^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{a^2+b^2}{a^2+b^2}=3\)

Dấu "=" xảy ra khi \(a=b=c\)

//Bạn chép đề sai, vế phải là số 3 chứ ko phải 1

30 tháng 11 2017

sky oi say oh yeah

24 tháng 3 2021

Bài giải

...