K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

điểm H ở đâu vậy bạn?

20 tháng 6 2019

Tham khảo các bài toán khó trên h.vn nhé bạn hoặc

20 tháng 6 2019

Câu hỏi tương tự:https://olm.vn/hoi-dap/detail/217354191899.html

~Hok tốt~

29 tháng 6 2023

a) Để chứng minh tứ giác ABFM là tứ giác nội tiếp, ta cần chứng minh góc AMB + góc AFB = 180 độ.

Góc AMB là góc giữa đường chéo BD và cạnh AB của hình vuông ABCD. Vì đường chéo BD cắt AE tại M, nên góc AMB chính là góc EAM.

Góc AFB là góc giữa đường thẳng EF và cạnh AB của hình vuông ABCD. Vì đường thẳng EF song song với cạnh AB, nên góc AFB bằng góc EAF.

Theo đề bài, góc EAF + 45 độ = 180 độ. Do đó, góc EAF = 180 - 45 = 135 độ.

Vậy, ta có góc AMB + góc AFB = góc EAM + góc EAF = 135 độ + 135 độ = 270 độ = 180 độ.

Vì tổng hai góc AMB và AFB bằng 180 độ, nên tứ giác ABFM là tứ giác nội tiếp.

b) Khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, ta cần chứng minh rằng đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

Gọi O là giao điểm của đường chéo BD và đường thẳng EF. Ta cần chứng minh rằng O nằm trên một đường tròn cố định khi E và F di động.

Vì góc EAF + 45 độ = 180 độ, nên góc EAF = 135 độ. Điều này có nghĩa là tam giác EAF là tam giác cân tại A.

Do đó, đường trung tuyến MN của tam giác EAF là đường cao và đường trung trực của cạnh EF. Vì M và N lần lượt là giao điểm của đường trung tuyến MN với AE và AF, nên M và N là trung điểm của AE và AF.

Vì M và N là trung điểm của hai cạnh của hình vuông ABCD, nên OM và ON là đường trung trực của AB và AD. Do đó, O nằm trên đường trung trực của cạnh AB và AD.

Vì AB và AD là hai cạnh cố định của hình vuông ABCD, nên đường trung trực của AB và AD là đường thẳng cố định. Vậy, O nằm trên một đường tròn cố định.

Vì vậy, khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

 

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)

 

9 tháng 2 2021

Giải thích các bước giải:

Gọi cạnh hình vuông là a

Vì M là trung điểm DC →DM=12a→AM=AD2+DM2=a52

Ta có : AK⊥KM,AD⊥DM→ADMK nội tiếp

→KAM^=KDM^=45o→ΔKMA vuông cân tại K→AK=KM=MA2=a522 

Do ADMK là tứ giác nội tiếp, theo định lý ptoleme 

Gọi giao của AC và BD là O, cạnh hình vuông là AB=a

=>AC=DB=a căn 2; \(OA=OB=OC=OD=\dfrac{a\sqrt{2}}{2}\)

góc ADM=góc AKM=90 độ

=>AKMD nội tiếp

=>góc AKM=góc KDM=45 độ

=>ΔKAM vuông cân tại K

ΔADM vuông tại D

=>\(AM^2=AD^2+DM^2=\dfrac{5}{4}a^2\)

ΔAKM vuôg cân tại K

=>\(AM^2=2\cdot AK^2\)

=>\(2AK^2=\dfrac{5}{4}a^2\)

=>AK^2=5/8a^2

ΔAOK vuông tại O nên  OK^2=AK^2+AO^2

=>OK=a/2căn 2

=>DK=DO+OK=3/4*a*căn 2

=>DK/DB=3/4

9 tháng 4 2019

Ai kb vs mình nha

9 tháng 4 2019

hello bạn cùng tuổi cùng tên nha