Lớp 6A có 36 học sinh, lớp 6B có 32 học sinh, lớp 6C có 48 học sinh. Mỗi sáng thứ hai chào cờ , 3 lớp lại xếp thành một số hàng dọc mà mỗi hàng có số học sinh như nhau và không lớp nào bị lẻ hàng. Tính số hàng dọc nhiều nhất mà ba lớp có thể xếp được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SO HANG DOC NHIEU NHAT MA LOP 6A CO THE XEP DUOC LA 10 HANG
40/4=10
SO HANG DOC NHIEU NHAT MA LOP 6B CO THE XEP DUOC LA 11 HANG
44/4=11
SO HANG DOC NHIEU NHAT MA LOP 6C CO THE XEP DUOC LA 8 HANG
LI DO MA MINH CHIA CHO 4 BOI VI
40=2*2*2*5
44=2*2*11
32=2*2*2*2*2
gọi số học sinh cả ba lớp là a
Vì muốn ba lớp xếp hàng sao cho số hàng dọc bằng nhau và xếp số hàng ngang ít nhất có thể được ở mỗi lớp nên a thuộc vào BCNN ( 32; 48; 56 ).
Ta có BCNN ( 32; 48; 56 ) = 672
khi đó, ta có ít nhất 672 hàng ngang
Lúc này, ta có:
lớp 6a: 672 : 32 = 21 ( hàng )
lớp 6b: 672 : 48 = 14 ( hàng )
lớp 6c: 672 : 56 = 12 ( hàng )
Số hàng dọc nhiều nhất là \(ƯCLN\left(44,40,36\right)=4\) hàng
Khi đó mỗi hàng lp 6A có 44:4=11(hs)
Khi đó mỗi hàng lp 6B có 40:4=10(hs)
Khi đó mỗi hàng lp 6C có 36:4=9(hs)
Mỗi lớp xếp được thành 4 hàng
Lớp 6A:11hs
Lớp 6B:10hs
Lớp 6C:9hs
Gọi x là số hàng dọc nhiều nhất có thể xếp
Theo đề bài , ta có 40 chia hết cho x ; 48 chia hết cho x ; 32 chia hết cho x và x lớn nhất
=> x thuộc ƯCLN ( 40,48,32 )
Ta có 40 = 23 x 5
48 = 24 x 3
32 = 25
Vậy ƯCLN (40,48,32) = 23 = 8
=> x = 8
Vậy số hàng dọc có thể xếp được nhiều nhất là 8 hàng dọc
Gọi số hàng dọc nhiều nhất có thể chia là x
⇒ x = ƯCLN(36; 32; 48)
Ta có:
\(36=2^2\cdot3^2\)
\(32=2^5\)
\(48=2^4\cdot3\)
\(\Rightarrow x=ƯCLN\left(36;32;48\right)=2^2=4\) (hàng)
Vậy: ...