tìm x,y, biết :
\(\frac{x}{15}=\frac{y}{14}\) và x - y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{21}{3}=7\)\(\Rightarrow\hept{\begin{cases}x=7.5=35\\y=2.7=14\end{cases}}\)
c,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y}{4+3}=\frac{14}{7}=2\)\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.2=4\end{cases}}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
ta có x/y = 2/5 và x-y=15
=>x/5=y/2
áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/5 =y/2 =x-y/5-2 = 15/3 = 5
=> x/5=5 => x=25
=>y/2 = 5 => y =10
Ta có: \(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\) và \(x-y=15\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{15}{-3}=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-5\Rightarrow x=-10\\\frac{y}{5}=-5\Rightarrow y=-25\end{cases}}\)
Vậy ...
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}.\)
\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\)
\(=\frac{6+36}{42}=\frac{42}{42}=1\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+11=13\\y+12=14\\z+13=15\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)
Vậy \(x=y=z=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}\)
\(=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{13+14+15}=\frac{16+36}{42}=\frac{42}{42}=1\)
\(\Rightarrow\frac{x+11}{13}=1\Rightarrow x+11=13\Rightarrow x=13-11=2\)
\(\Rightarrow\frac{y+12}{14}=1\Rightarrow y+12=14\Rightarrow y=14-12=2\)
\(\Rightarrow\frac{z+13}{15}=1\Rightarrow z+13=15\Rightarrow z=15-13=2\)
Vậy \(x=y=z=2\)
Ta có:
\(\begin{cases}\frac{x}{5}=\frac{y}{-7}\\\frac{y}{4}=\frac{z}{15}\end{cases}\)\(\Rightarrow\begin{cases}\frac{x}{-20}=\frac{y}{28}\\\frac{y}{28}=\frac{z}{105}\end{cases}\)\(\Rightarrow\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{-20}=\frac{y}{28}=\frac{z}{105}=\frac{3y}{84}=\frac{4z}{420}=\frac{x+3y-4z}{-20+84-420}=\frac{18}{-356}=\frac{-9}{178}\)
\(\Rightarrow\begin{cases}x=\frac{-9}{178}.\left(-20\right)=\frac{90}{89}\\y=\frac{-9}{178}.28=\frac{-126}{89}\\z=\frac{-9}{178}.105=\frac{-945}{178}\end{cases}\)
Vậy \(x=\frac{90}{89};y=\frac{-126}{89};z=\frac{-945}{178}\)
Đặt \(\frac{7}{x+y}=a,\frac{1}{x-y}=b\)
Khi đó ta có:
\(\hept{\begin{cases}2a+3b=5\\a-2b=-1\end{cases}}\Rightarrow\hept{\begin{cases}2a+3b=5\left(1\right)\\2a-4b=-2\left(2\right)\end{cases}}\)
Trứ vế với vế của (1) và (2), ta được:
\(2a+3b-\left(2a-4b\right)=5-\left(-2\right)\)
\(\Rightarrow7b=7\Rightarrow b=1.\)
Thay b = 1 vào (1): \(2a+3=5\Rightarrow a=1.\)
\(a=1\Rightarrow\frac{7}{x+y}=1\Rightarrow x+y=7\)
\(b=1\Rightarrow\frac{1}{x-y}=1\Rightarrow x-y=1\)
Từ đó tính được \(x=4,y=3\)
Chúc bạn học tốt.
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\) và x - y = 15
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{15}{-3}=-5\)
\(\frac{x}{2}=-5\Rightarrow x=-10\)
\(\frac{y}{5}=-5\Rightarrow y=-25\)
Có:\(\frac{x}{y}=\frac{2}{5}\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{15}{-3}=-5\)
=> \(\frac{x}{2}=-5\Rightarrow x=-10\)
\(\frac{y}{5}=-5\Rightarrow y=-25\)
\(\frac{x}{15}=\frac{y}{14}\) và \(x-y=5\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta được:
\(\frac{x}{15}=\frac{y}{14}=\frac{x-y}{15-14}=\frac{5}{1}=5\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{14}=5\end{cases}\Rightarrow}\hept{\begin{cases}x=75\\y=70\end{cases}}\)
Vậy .....
\(\frac{x}{15}\)= \(\frac{y}{14}\) và x- y=5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}\)= \(\frac{y}{14}\)=\(\frac{x-y}{15-14}\)= \(\frac{5}{1}\)= 5
Suy ra: \(\frac{x}{15}\)= 5 \(\Rightarrow\)x = 15.5=75
\(\frac{y}{14}\)= 5 \(\Rightarrow\)y = 14.5= 70
Vậy x= 75 ; y = 70